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Abstract
Recent research has demonstrated that the network measure node strength or sum of a node’s connections is roughly
equivalent to confirmatory factor analysis (CFA) loadings. A key finding of this research is that node strength represents
a combination of different latent causes. In the present research, we sought to circumvent this issue by formulating a
network equivalent of factor loadings, which we call network loadings. In two simulations, we evaluated whether these
network loadings could effectively (1) separate the effects of multiple latent causes and (2) estimate the simulated factor
loading matrix of factor models. Our findings suggest that the network loadings can effectively do both. In addition, we
leveraged the second simulation to derive effect size guidelines for network loadings. In a third simulation, we evaluated the
similarities and differences between factor and network loadings when the data were generated from random, factor, and
network models. We found sufficient differences between the loadings, which allowed us to develop an algorithm to predict
the data generating model called the Loadings Comparison Test (LCT). The LCT had high sensitivity and specificity when
predicting the data generating model. In sum, our results suggest that network loadings can provide similar information
to factor loadings when the data are generated from a factor model and therefore can be used in a similar way (e.g., item
selection, measurement invariance, factor scores).

Keywords Psychometric networks · Node strength · Factor loadings

In most areas of psychology, reflective latent variable
models are the standard conceptualization of measurement
(Borsboom, Mellenbergh, & van Heerden, 2003). In a
reflective model, observable variables that measure a
psychological attribute are thought to co-occur because
of an underlying common cause—that is, an unobserved
(latent) attribute causes the covariation between the
observed variables (often referred to as the common cause
model; Marsman et al., 2018; Schmittmann et al., 2013).
This perspective is most often provided by factor analysis in
which reflective latent variables (or factors) are pointing to
the observed variables (Edwards & Bagozzi, 2000).

In the last decade, mutualism models have emerged as an
alternative explanation for the formation of psychological
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attributes proposing that observable variables co-occur
because they reciprocally and dynamically reinforce one
another, forming a causally connected system (Borsboom,
2008; van der Maas et al., 2006). This perspective is most
often provided by network models, which are depicted by
nodes (circles) representing variables (e.g., psychopatholog-
ical symptoms) and edges (lines) representing the partial
correlation between two nodes conditioned on all other
nodes (Epskamp & Fried, 2018).

Despite their differing representations and hypotheses
about the cause of the co-occurrence between observable
variables, more recent research has demonstrated that latent
variable and network models can be mathematically equated
(Golino & Epskamp, 2017; Hallquist, Wright, & Molenaar
2019; Marsman et al., 2018; van Bork et al., 2019). In
fact, Guttman (1953) explicated this equivalence nearly
60 years ago when proposing a generalized dimensional
approach called image structural analysis, which regresses
all variables on each other and does not rely on the
introduction of hypothetical variables (i.e., latent variables).
Although network models were not yet formalized in
psychology, Guttman’s approach is essentially the basis of
contemporary node-wise regression network models where
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each node in the network is regressed on all other nodes
(Haslbeck & Waldorp, 2020).

Guttman noted in his exposition that the Spearman-
Thurstone common factor theory is a special case of
his image theory in which error terms are uncorrelated.
Therefore, if the data generating mechanism is a factor
model, the variance-covariance matrix of the anti-images
(i.e., correlations between the residuals) tends toward a
diagonal matrix as the number of items (n) increases (and
the off-diagonal elements are equal to zero in the limit as n
approaches infinity), irrespective of the number of factors.

A consequence, as Guttman (1953, p. 296) points out,
is that “if not all non-diagonal elements of the [variance-
covariance matrix of the anti-images] are close to zero,
one is led to reject the hypothesis that a determinate
common-factor space of rank less than n holds for the
universe.” In other words, Guttman’s image structural
analysis could be the first step in checking the plausibility
of the existence of underlying latent factors in multivariate
data. The connection between image theory and factor
analysis thus goes in the same direction of the assumption of
conditional independence in factor models where variables
are uncorrelated given a hypothetical latent variable (Sobel,
1997).

A separate implication of this equivalency is that
different data generating mechanisms, such as those
suggested by latent variable (factor) and network models,
can create similar sets of statistical relations (Marsman
et al., 2018; van Bork et al., 2019). As van Bork et al. (2019)
point out, this similarity of statistical relations extends into
the first (means) and second (variance-covariance matrix)
moments, which means that any covariance matrix can
be represented as a factor and network model. Guttman
(1953) shows that the covariance that is uniquely shared
between each pair of variables supports a more general form
of common factor theory. Thus, although the models are
representing different covariance partitions of the variance-
covariance matrix (zero-order vs. partial correlations), they
are still deriving information from the same set of statistical
relations and therefore should provide similar information
(e.g., Waldorp & Marsman, 2020).

The goal of our paper is to further evaluate the
equivalence between factor and network models by showing
that network models can estimate an equivalent metric
to factor loadings. Deriving such a measure would
psychometrically link factor and network models, providing
evidence that these models can yield similar information
despite offering distinct data generating hypotheses for
what this information substantively means. Factor loadings
are fundamental to modern psychometrics, providing
information about how well a variable is measuring a
certain construct and whether a variable is influenced by
multiple latent causes (DeVellis, 2017). This substantive

interpretation changes when placed into the context of
network models, which propose that variables co-occur
not because of latent causes but because they are causally
coupled. This data generation hypothesis provides the
substantive interpretation that factors in a network model
“emerge” from their constituent causal connections rather
than cause them (Cramer, 2012). This suggests that the
interpretation of a network equivalent factor loading would
be each node’s unique contribution to the emergence of
a coherent dimension (or collection of related variables
whose relations are not necessarily due to a common cause,
Christensen et al. 2020).1

Recent research has demonstrated that one particular
network measure, node strength or the sum of a node’s
connections, is statistically redundant with confirmatory
factor analysis (CFA) factor loadings Hallquist et al.’s
(2019). The aim of our study is to build on this work
by developing a novel modification of node strength,
which we refer to as network loadings. The purpose of
these network loadings is to circumvent the limitation of
latent confounding or multiple causes on a variable that
was pointed out by Hallquist et al. (2019). Moreover,
we evaluate whether network loadings provide different
information from factor loadings when data are generated
from a model other than a factor model (e.g., random and
network models). We begin by reviewing (Hallquist et al.,
2019) three simulation studies to motivate the development
of a network equivalent to factor loadings.

Review of Hallquist, Wright, &Molenaar
(2019)

Across Hallquist and colleagues’ (2019) three simulation
studies, their goal was to investigate how centrality
measures or the quantification of a node’s relative position
in a network were related to and affected by latent
influences on variables. Centrality measures are the most
frequently used statistic to quantify networks in psychology
and to date have been pointed to as a key difference
between what latent variable and network models measure

1Throughout the paper, we use factor analytic terminology to explain
and report our findings even when referring to network models. This
is done to maintain clarity and conciseness of our discussion without
being bogged down by constantly stating that network models hold
different data generating hypotheses. It’s important to note, however,
that a factor could be interpreted as a collection of variables that are co-
occurring because of reciprocal causal relations, and this collection of
co-occurring variables in a network could be interpreted as occurring
because of a common cause (Christensen et al., 2020; Golino et al.,
2020b). Ultimately, it is the researcher’s choice of psychometric
model and the interpretation of that model that dictates how they
theoretically view these relations occurring (Borsboom, 2006; Fried,
2020; Marsman et al., 2018).
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(Bringmann, Elmer, Epskamp, Krause, Schoch, Wichers,
& Snippe, 2019; Cramer, Waldrop, van der Maas, &
Borsboom, 2010). The three centrality measures they used
in their study were betweenness, closeness, and node
strength (often referred to as strength). Conceptually, high
betweenness nodes are ones that are most often used on
the shortest path (i.e., shortest number of edges) from one
node to another, high closeness nodes are ones that have the
shortest average number of edges to all other nodes in the
network, and high node strength nodes are ones that have
the largest (absolute) sum of their weighted edges.

As Hallquist et al. (2019) point out, these centrality
measures are secondary statistics because they depend
on the structure of the network, which must first be
estimated. One common approach has been to estimate
a Gaussian Graphical Model (GGM, Lauritzen, 1996)
where the edges between nodes are partial correlations
conditioned on all other nodes in the network. This is
typically achieved by applying the graphical least absolute
shrinkage and selection operator (GLASSO, Friedman,
Hastie, & Tibshirani, 2008, 2014) and using the extended
Bayesian information criteria (EBIC, Chen & Chen, 2008)
to select the best fitting model (Epskamp, Waldorp, Mõttus,
& Borsboom, 2018b). The network model estimated by the
GLASSO is often sparse meaning that many nodes are not
connected to one another (Epskamp, Kruis, & Marsman,
2017a). Centrality measures are then used to estimate the
relative positions of nodes in the network. Consequently, the
validation of centrality findings are specific to the network
estimation method. For all of their simulation studies,
Hallquist et al. (2019) used the GLASSO model with EBIC
model selection to estimate their networks.

In their first simulation study, they examined whether there
was any correspondence between betweenness, closeness,
and node strength centrality measures and CFA factor load-
ings in unidimensional and multidimensional factor models.
Their results demonstrated that betweenness and closeness
centrality were highly correlated with the CFA loadings of
the one factor model (r = .74 and r = .94, respectively) but
had much lower correlations with these loadings when there
was more than one factor (r’s between .31 and .55). In the
one factor condition, they found that the variability in corre-
lations for both measures were due to sampling variability,
while in the multiple factor conditions the low correla-
tions were due to sampling variability and the measures
dependence on the connectedness of the entire network and
therefore were more affected by cross-factor associations
than the dominant factor loading. In contrast, node strength
was significantly correlated with the factor loadings across
all conditions (r’s between .97 and .98). Because of the lack
of correspondence of betweenness and closeness centrality
with factor loadings, we focus solely on node strength for
the rest of their simulations.

In their second simulation study, they examined the
effects of common versus specific sources of covariation
or the extent to which two indicators on different factors
were related through a shared separate factor (these will
be referred to as the target indicators). These effects
were examined in one of the target indicators and a
comparator indicator (i.e., an indicator on the same factor
as the respective target indicator). In contrast to the first
simulation, there was only one condition with two factors
and all but one variable (the target indicator) in their
respective factors had a factor loading of .80. The two target
indicators that shared a separate factor had their correlation
vary between r = 0 and r = .64. This allowed them to
examine the extent to which node strength was associated
with the variance from the target indicators’ respective
factors (specific variance) to their shared factor (shared
variance).

A general finding of their second simulation was that
the edge weight (i.e., partial correlation) between the target
indicators had a nearly perfect relationship with the extent
to which there was a specific association between them
(r = .997). As for the node strength estimates, there
was a moderate main effect of specific-to-shared variance
balance (or the difference of the specific and shared
variance) and a large main effect of indicator type (target
and comparator). This suggests that there was a large
increase in a node’s strength due to the shared factor. The
comparator indicator’s node strength had a small main effect
from the specific-to-shared variance balance, suggesting
minimal impact from the shared factor. Importantly, they
noted that there was a nonlinear (cubic) relationship for
node strength’s specific-to-shared variance balance.

In their final simulation study, they examined the effects
of multiple latent causes. This study was setup with a two-
factor model with eight indicators per factor and the target
indicator that loaded onto both factors (i.e., 17 indicators
in total). The target indicator had factor loadings on both
factors ranging between .20 and .80 in increments of .05.
All other loadings were fixed at .80. Like their second
simulation, they also examined a comparator indicator.
The results of this study revealed that the target indicator’s
node strength was an equally weighted combination of
factor 1 and factor 2 loadings (both r’s = .94). The
comparator indicator’s node strength was weakly associated
with the variation of the target’s factor loadings on factor 1
and factor 2.

In sum, their simulations demonstrated that node strength
was roughly redundant with CFA factor loadings and
affected by different causal sources. These takeaways are
each important for their own reasons. The first finding
suggests that there is a strong connection between node
strength and factor loadings, which means that node
strength could potentially be used as an equivalentx
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psychometric tool as factor loadings. The second finding
suggests that the relationship between node strength and
factor loadings should be tempered in a way that reflects
the unique causes in the system. This suggests that the
unique causal components of a network must be identified
before network measures can be meaningfully interpreted
(or at least interpreted similarly to factor loadings; see
Christensen et al., 2020 for how this can be achieved;
Hallquist et al., 2019).

Present research

We had three goals for the present research. For our first
goal, we wanted to develop a modification of node strength
that could account for its limitations uncovered by Hallquist
and colleagues’ second and third simulations (i.e., network
loadings). Specifically, we wanted to explicitly test how
node strength relates to multiple latent causes when split by
those causes, which we achieved by replicating Hallquist
and colleagues’ second simulation. We expected that doing
so would circumvent the confounding effects of different
latent causes that affect node strength’s interpretation
(i.e., where the “strength” of each node is coming
from).

For our second goal, we used a Monte Carlo simulation
approach to examine the accuracy of the network loadings
in estimating population factor loadings across a variety of
different data conditions. The use of population loadings
contrasts with Hallquist and colleagues’ first simulation
where node strength was correlated with CFA loadings.
A direct comparison with the population factor loadings
is a better benchmark for whether network models can
accurately identify this information. We also computed
EFA and CFA loadings to evaluate the extent to which
network loadings were more similar to EFA or CFA
loadings. For Simulations 1 and 2, we generated continuous
and polytomous data to evaluate the effects of discrete
categories on network loadings.

For our third goal, we wanted to examine whether factor
and network loadings differed when the data generating
model was a random, factor, or network model. For this
goal, we first compared the descriptive statistics of the
loading proportions that were greater than or equal to
small, moderate, and large effect sizes as well as dominant
and non-dominant (i.e., cross-) loadings in data generated
from random, factor, and network models. Based on these
proportions, we then derived heuristics for determining
whether the data were generated from a random, factor, or
network model. Finally, we employed a third simulation
to evaluate the effectiveness of these heuristics in an
algorithm designed to predict the true data generating
model.

Simulation 1: Effects of a shared latent cause

Our first simulation set out to determine whether the
network loadings could circumvent the issue of multiple
latent causes that was found for the traditional node strength
measure. To test this goal, we directly replicated Hallquist
and colleagues’ second simulation using our network
loadings.

Methods

Data generation

We generated data from multivariate normal factor models
following the same approach as Golino et al. (2020b).
First, the reproduced population correlation matrix was
computed:

RR = ���′,

where RR is the reproduced population correlation matrix,
lambda (�) is the k (variables) × r (factors) factor loading
matrix, and � is the r × r correlation matrix. The
population correlation matrix, RP, was then obtained by
putting the unities on the diagonal of RR. Next, Cholesky
decomposition was performed on the correlation matrix
such that:

RP = U′U.

If the population correlation matrix was not positive
definite (i.e., at least one eigenvalue ≤ 0) or any single
item’s communality was greater than 0.90, then � was
re-generated and the same procedure was followed until
these criteria are met. Finally, the sample data matrix of
continuous variables was computed:

X = ZU,

where Z is a matrix of random multivariate normal data
with rows equal to the sample size and columns equal to
the number of variables. To generate polytomous data, each
continuous variable was categorized into five categories,
resembling a 5-point Likert scale, with a random skew
ranging from -2 to 2 on a 0.5 interval from a random uniform
distribution following the approach of Garrido, Abad, and
Ponsoda (2011, 2013).

Psychometric networkmodel

The GGM was used as the psychometric network model.
The GGM is a network model where nodes represent vari-
ables and edges represent the partial correlation between
two nodes given all other nodes in the network. The
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GLASSO has been the most commonly applied GGM net-
work estimation method in the network psychometrics liter-
ature (Epskamp & Fried, 2018). The least absolute shrink-
age and selection operator (LASSO; Tibshirani, 1996) of
the GLASSO is a statistical regularization technique that
reduces parameter estimates with some estimates becom-
ing exactly zero (for mathematical notation, see Epskamp
& Fried, 2018). The aim of this technique is to achieve
a sparse model—non-relevant edges are removed from the
model, leaving only a subset of statistically relevant (but not
necessarily significant) edges (Epskamp et al., 2017a).

The popular approach in the network psychometrics
literature is to compute models across several values of λ

(usually 100) and to select the model that minimizes the
EBIC (Epskamp & Fried, 2018). The EBIC model selection
uses a hyperparameter (γ ) to control how much it prefers
simpler models (i.e., models with fewer edges; Foygel &
Drton, 2010). Larger γ values lead to sparser models, while
smaller γ values lead to denser models. When γ = 0, the
EBIC is equal to the Bayesian information criterion. In
the psychometric network literature, this approach has been
termed EBICglasso and is applied via the qgraph package
(Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom,
2012) in R (R Core Team, 2020). For continuous data,
Pearson’s correlations were computed; for polytomous data,
polychoric correlations were computed.

Following the exploratory graph analysis (EGA) network
estimation approach (Golino et al., 2020b), the minimum λ

value is set to .1, which is slightly larger than the default
of .01. This larger value is selected to reduce the possibility
of false positive edges in the network. Second, the γ value
is set to .50, which is the default; however, it is iteratively
decreased by .25 until reaching zero based on whether there
is a single node that is disconnected from the network (i.e.,
it has no connections to any nodes). If γ reaches zero, then
the network is used regardless of whether any nodes are
disconnected.

The EGA approach also applies a community detection
algorithm (Golino et al., 2020b) to determine the number
of communities (or factors) in the network. Because we are
only interested in the performance of the network loadings,
we assigned items to their population factors to avoid
confounding our results with the process of estimating the
factors. The EGAnet package (Golino & Christensen, 2020)
in R was used to compute networks following the EGA
approach.

Network loadings

An important finding of Hallquist and colleagues’
(2019) simulations was that node strength represented a
combination of dominant and cross-factor loadings. To cir-
cumvent this issue, a node’s strength can be split between

the nodes in each factor. This can be mathematically written
as:

Si =
n∑

j=1

|wij |,

Lif =
F∑

j∈f

|wij |,

where |wij | is the absolute weight (e.g., partial correlation)
between node i and j , Si is the sum of the edge weights
connected to node i across all nodes (n; i.e., node strength
for node i), Lif is the sum of edge weights in factor f that
are connected to node i (i.e., node i’s loading for factor
f ), and F is the number of factors (in the network). This
measure can be standardized using the following formula:

zLif
= Lif√∑

L.f
,

where the denominator is equal to the square root of the
sum of all the weights for nodes in factor f . Notably,
the standardized loadings are absolute weights with the
signs being added after the loadings have been computed
(following the same procedure as factor loadings; Comrey
& Lee, 2013). In contrast to factor loadings, the network
loadings are computed after the number of factors have
been extracted from the network’s structure. Variables
are deterministically assigned to specific factors via a
community detection algorithm rather than the traditional
factor analytic standard of their largest loading in the
loading matrix. This means that some nodes may not have
any connections to nodes in other factors in the network,
leading some variables to have zeros for some factors in the
network loading matrix.

These standardized network loadings summarize the
information in the edge weights and so they depend on
the type of association represented by the edge weight
(e.g., partial correlations, zero-order correlations). Thus, the
meaning of these network loadings will change based on
the type of correlation used. Specifically, partial correlations
represent the unique measurement of a factor whereas
zero-order correlations represent the unique and shared
contribution of a variable’s measurement of a factor. The
network loadings were computed using the net.loads
function in the EGAnet package.

Design

Following Hallquist and colleagues’ (2019) second sim-
ulation design, we generated two orthogonal factors (no
cross-loadings) with ten variables per factor. All except one
variable on each factor (i.e., the target indicators) had fac-
tor loadings of .80. The target indicators loaded on to their
respective orthogonal factors but also a third shared factor.
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The loadings for these indicators were manipulated such
that their variance explained by the shared factor ranged
from 0% to 64% in 1% increments: r2f actor + r2shared = .64,

where r2f actor is their respective factors and r2shared is their
shared factor. This gave us a total of 65 population models
that were replicated 500 times with a sample of 400 for each
model replication.

Results

The goal of our first simulation was to determine how the
network loadings were affected by multiple latent causes.
More specifically, we wanted to test whether the network
loadings could dissociate the variance of separate and
shared latent causes on two target variables. We assigned
the target variables to a third factor across all conditions
and computed the network loadings. By doing this, we
could specifically determine the magnitude of the loading
on each variable’s respective factor (i.e., separate latent
causes) as well as the shared factor (i.e., shared latent
cause) by obtaining the corresponding values. We ignored
any cross-loadings that were for the factor that the target
variables were not assigned to. We computed Spearman’s
rho correlations to quantify the association between the
magnitude of each network loading and their corresponding
variance explained values for both the respective and shared
factors.

As depicted in Fig. 1, there was a strong relationship
between the network loadings and the variance of both
respective (separate) and shared latent causes, suggesting
that the network loadings could distinctly dissociate the
latent causes of their respective and shared factors.

For the continuous data, the correlations were both r =
.98 for the respective and shared factors; for the polytomous
data, the correlations were r = .95 and r = .97 for
the respective and shared factors, respectively. Following
Hallquist and colleagues (2019), we subtracted the shared
factor’s explained variance from the respective factor
variance resulting in what they referred to as specific-to-
shared variance balance. Similarly, we subtracted the target
indicators’ shared network loadings from their respective
factor network loadings resulting in what we call differential
network loadings. We found that there was a strong linear
relationship between these differential network loadings and
the specific-to-shared variance (middle of Fig. 1). Indeed,
when regressing the specific-to-shared variance on the
differential network loadings, the relationship was strongly
linear for both the continuous (Adj. R2 = 0.960) and
polytomous data (Adj. R2 = 0.938) with little additional
variance being contributed by the quadratic (Adj. R2 =
0.965 and Adj. R2 = 0.944, respectively) and cubic (Adj.
R2 = 0.970 and Adj. R2 = 0.946, respectively) terms.
These findings contrast with the cubic relationship that
Hallquist et al. (2019) found with the traditional node
strength measure and suggest that the network loadings

Fig. 1 The left figure depicts the relationship between the means of
the network loadings (circles) for each population variance condition
for the target variables loading onto their respective (separate) fac-
tors. The middle figure depicts the relationship between the means
of the network loadings (circles) for each population variance con-
dition for the target variables loading onto their respective (separate)
factors substracted from the shared factor. Negative values represent

greater network loadings and variance explained for the shared factor,
while positive values represent greater network loadings and variance
explained for their respective factors. The right figure depicts the rela-
tionship between the means of the network loadings (circles) for each
population variance condition for the target variables loading onto the
shared factor
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circumvented the issue of a confounding latent factor. In
short, the network loadings could effectively dissociate the
variance from different latent causes.

Simulation 2: Correspondence between
factor and network loadings

In Simulation 1, we verified that network loadings can
account for different latent causes on a variable, which
circumvents the issue identified in the traditional node
strength measure. The goal of our second simulation was
to extend the effectiveness of network loadings to a more
general context by building on Hallquist and colleagues’
(2019) first simulation where they compared node strength
to CFA factor loadings.

Importantly, our simulation expanded on their study
in two substantive ways. First, our study compared the
accuracy of network, CFA, and EFA loadings in the
estimation of population factor loadings as well as to each
other. This contrasts with their study where node strength
was correlated with CFA loadings only. Comparing network
loadings with CFA and EFA loadings allows for a better
comparison of what network loadings are more “like.”
On the one hand, CFA loadings typically offer a simple
structure where indicators only load on their factor. On the
other hand, EFA loadings offer a “saturated structure” in the
sense that each variable has a dominant and cross-loading
on every factor. Network loadings offer a complex structure
in-between these two structures where some variables have
cross-loadings, while variables may not be associated with
certain factors resulting in some variables with a loading of
zero on those factors.

Second, our simulation generated data from more
complex conditions and data structures. Specifically, we
generated data with dominant loadings randomly varying
between .40 and .70 and manipulated a broader range
of correlations between factors ranging from orthogonal
(.00) to large (.70). In addition, cross-loadings were
randomly drawn from a normal distribution with its variance
increasing as the correlations between factors increased.
In contrast, Hallquist and colleagues generated data with
a simple structure (without cross-loadings). Finally, we
manipulated sample size (very small to large) as well as
generated continuous and polytomous data.

As a secondary aim, we identified the correspondence
between the population and network loadings. Because the
network loadings are derived from partial correlations, the
typical guidelines corresponding to small, moderate, and
large factor loadings (.40, .55, and .70, respectively; Comrey
and Lee, 2013) are not immediately transferable to network
loadings. To get a better grasp on the correspondence
between the magnitude of the population and network

loadings, we leveraged the large number of samples
generated in this simulation to provide effect size guidelines
for network loadings using the cut-offs from traditional
factor analysis.

Methods

Data generation

We generated data from multivariate normal factor models
following the same procedure as Simulation 1.

Loadings

CFA

For the CFA model, we used the lavaan package’s (Rosseel,
2012) cfa function to estimate factor loadings. The CFA
models were specified with the known population factor
structure of the data—that is, the population factors with
the items placed in their known factors. For the continuous
data, we used the maximum likelihood estimator; for the
polytomous data, we used the weighted least square mean
and variance adjusted estimator.

EFA

For the EFA model, we used the psych package’s (Revelle,
2017) fa function to estimate the factors in the data.
Because the number of factors is known, we specified the
population number of factors as the number of factors to
compute in the EFA. The factor model was estimated using
the maximum likelihood for continuous data and weighted
least squares for polytomous data. For both types of data,
we used the geomin oblique rotation from the GPArotation
package (Bernaards & Jennrich, 2005).

Network

The network loadings were estimated using the same
GLASSO and network loading procedure described in
Simulation 1. Similar to the CFA model, nodes were
assigned to the known population structure of the data to
avoid confounding the evaluation of the network loadings
with the performance of community detection algorithms
(e.g., Christensen & Golino, 2020).

Factor orientation

To orient the variables so that they were in the same
structural pattern as the population factors, we computed
the absolute sum of each factor’s loadings in the estimated
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methods corresponding to the variables in the population
factors. The factor with the largest absolute sum was
then assigned as the dominant factor for those variables.
This orientation was done for each loadings method. We
excluded samples from our analyses in the instance that
the same estimated factor was selected for more than one
population factor (1.8% of samples in total across both
continuous and polytomous data).

Design

The population models were simulated from a multidimen-
sional multivariate normal distribution with two, three, and
four factors, and four, eight, and twelve variables per fac-
tor. The dominant factor loadings on each factor randomly
varied between .40 and .70. The correlations between fac-
tors were orthogonal (.00), small (.30), moderate (.50), and
large (.70). As the correlations between factors increased,
the cross-loadings increased. The cross-loadings were gen-
erated from a random normal distribution with a mean of
zero and standard deviation of .050, .075, .100, and .125 for
orthogonal, small, moderate, and large correlations between
factors, respectively. This generation of cross-loadings led
to both positive and negative values.

With each step increase in variance, the magnitude
of the cross-loadings also increased. This allowed some
cross-loadings to achieve nearly equivalent magnitudes as
the dominant loadings in the large correlations between
factors condition (.70). This adjustment provides a practical
implementation of our first simulation where some variables
are the result of multiple latent causes, which is increasingly
likely with larger correlations between factors. Finally,
sample sizes of 250 (very small), 500 (small), 1000
(moderate), and 5000 (large) were generated.

This simulation design allowed for a mixed factorial
design: 3 × 3 × 4 × 4 × 2 (number of factors ×
variables per factor × correlations between factors ×
sample size × number of responses) for a total of 288
simulated condition combinations and 72,000 simulated
datasets.

Statistical analyses

To compare the performance of the CFA, EFA, and network
loadings, we used Spearman’s rank-order correlation
between each method’s loadings and the known population
loadings. Rank-order rather than Pearson’s correlations
were chosen because they have a larger penalty for loadings
that differ in their order from the population loadings.
Moreover, we computed ANOVAs to evaluate the main and
interaction effects of conditions on the correlations between
the population loadings. Following Cohen (1992), we used

partial eta-squared (η2p) effect sizes of small (.01), moderate
(.09), and large (.25). Finally, we computed Spearman’s
rank-order correlation between all loadings to evaluate their
relations to each other and to determine whether the network
loadings were more related to EFA or CFA loadings.

Results

Across all conditions, the EFA loadings were the most
accurate (r̄ = .90) followed by the network (r̄ = .88)
and CFA loadings (r̄ = .82; Fig. 2). As a general trend,
all loading estimation methods were strongly affected by
the number of factors (≥ .15; see SI 1). The decrease in
accuracy with the number of factors was most pronounced
for the CFA loadings (η2p = 0.91), which were likely
affected by the simple structure of the loading matrix.

Another general trend was that the network loadings
tended to follow a similar pattern to the EFA loadings
(Fig. 2), which was corroborated by their correlations
across data types (r̂continuous = .92, r̂polytomous = .88,
and r̂overall = .90). Similarly, both EFA and network
loadings had equivalent effect sizes when correlated with
CFA loadings for continuous and polytomous data (both r̂’s
= .83 and .81, respectively) as well as across both data types
(both r̂’s= .82). A more detailed breakdown of these results
can be found in the Supplementary Materials (SI 1).

Correspondence between population factor and
network loadings

To get a better understanding of how the population
factor and network loadings aligned, we visualized their
correspondence by rounding the population factor and
network loadings to two decimal places and using absolute
values to obtain greater power for these values (Fig. 3). As
shown in Fig. 3, the network loading magnitudes for the
continuous and polytomous data did not differ by much
in their correspondence to the population factor loadings
suggesting that these magnitudes were consistent regardless
of data type.

There were three population loading effect size magni-
tudes of interest: 0.40, 0.55, and 0.70. For the population
loading of 0.40, the average network loading magnitude
was 0.13 for both continuous and polytomous data. For the
population loading of 0.55, the average network loading
magnitude was 0.22 for both continuous and polytomous
data; for the population loading of 0.70, the average network
loading magnitude was 0.34 and 0.33 for the continuous
and polytomous data, respectively. Taking these results in
hand, we suggest general effect size guidelines for network
loadings to be 0.15 for small, 0.25 for moderate, and 0.35
for large. Interestingly, there were strong linear trends for
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Fig. 2 Comparison of factor and network loadings broken down by
each condition. Error bars represent the 95 percent confidence inter-
vals are represented for each mean. Network loadings (GLASSO)
are represented by the dashed line and square, CFA loadings are

represented by the dotted line and circle, and EFA loadings are rep-
resented by the solid line and triangle. Continuous data are presented
in red and polychoric data are presented in blue. Note that the y-axis
begins at .60

the network loadings up to and after the population loading
magnitudes between 0.35 and 0.40 with the network loading
magnitudes being the most variable within that range. This
variability does not suggest that the network loadings are
inconsistent in this range but rather is an effect of a small
number of samples with population factor loadings in this
region (2.7% of the total number of population loadings
across all samples).

Simulation 3: Different data generating
models

So far, we’ve shown that network loadings can circumvent
the issue of latent confounding and effectively estimate the
population factor loadings across a variety of conditions.
Moreover, we’ve shown that there is a strong linear
correspondence between network and factor loadings,
which we used to derive effect size guidelines for the

network loadings. In short, our findings demonstrate that
network loadings are roughly equivalent to factor loadings
when the data generating model is a factor model. This
leaves open an important question: What if the data are
generated from a different model?

One key difference in the statistical basis of factor and
network models provide some hints about what should be
expected. Factor models attempt to extract the common
covariance between variables within a certain number of
factors. This means that the magnitude of factor loadings
depends on the extent to which there exists enough shared
variance across sets of variables. If, for example, data
are generated from a random model (random independent
variables), then the common covariance in the data should
be sparse and diffuse. This is because there is no common
cause across variables and therefore little shared variance.
When attempting to extract a certain number of factors,
there should be relatively few small, moderate, or large
factor loadings because the common covariance between
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Fig. 3 Correspondence between the population factor and network loadings. The circles represent the mean network loading for the continuous
(red) and polytomous (blue) data. Error bars represent the 95 percent confidence intervals are represented for each mean

any set of variables is scarce, which makes the chances of
larger loadings small.2

Network models do not extract the common covariance
between variables but instead map the unique associations
between the variables with the number of factors being
estimated afterwards. That is, network loadings are the
standardized sum of each node’s connection to a specified
factor meaning that their magnitudes only depend on each
node’s relative contribution to the overall sum of the
weights in the factor. From a conceptual point of view,
the network perspective suggests that components of the
network should be “causally autonomous” such that they
“differ [in their] causes and effects of other components.”
(Cramer et al., 2012, p. 415). In this sense, a random
correlation matrix could be a network model such that each
variable is causally autonomous. This should lead network
loadings to produce at least some small, moderate, and large
effect sizes even when the model is given a certain number
of factors. On this basis, factor loadings may be more
informative than network models for determining whether
data were generated from a random model because the

2It’s important to note that we are conceptualizing a random model as
a specific model: a random correlation matrix with small correlations
centered around zero (i.e., random independent variables whose
covariance is due to sampling variability). If data are generated from
a random correlation matrix where correlations between variables are
large, then this assumption does not hold. That is, there will be large
factor loadings because there is more shared variance. A factor model
will, however, fit poorly because such a matrix would not be low rank.
We thank the anonymous reviewer for pointing this out to us.

network loadings will still provide differential information
about the relations between variables and factors.

Although network models may be substantively more
aligned with a random model than factor models, most
real-world phenomena are not random. Indeed, many real-
world networks tend to have a small-world structure,
which is between a completely regular (lattice) structure
where each node is connected to a certain number of
neighbors (i.e., neighborhood) and a completely random
structure where there is no inherent pattern to each node’s
connections (Watts & Strogatz, 1998). To be more specific,
small-world networks are characterized by nodes having
many neighboring connections but also some cross-network
connections with even fewer nodes that act as hubs or
nodes with an above average number of connections.
These “small-world” characteristics have been found in
psychopathological symptoms where any two symptoms
in the network were on average about three symptoms
away from each other (Borsboom, Cramer, Schmittmann,
Epskamp, & Waldorp, 2011). These characteristics provide
some inference into what might be expected when factor or
network loadings are estimated for data generated from a
small-world network model.

For factor models, the connectivity between neighbors
suggests that there is likely to be some common covariance
within the clusters (i.e., sets of connected nodes) of the
network while the cross-network connectivity suggests that
there is likely to be some covariance between these clusters.
Moreover, nodes that act as hubs should allow a greater
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chance of some moderate and large factor loadings relative
to a random model. In a general sense, these characteristics
seem to resemble a factor model with moderate correlations
between factors. A key difference between a factor and
small-world network model is that being connected to a
neighbor does not necessarily suggest that they are all
highly correlated with one another (as they would in a
factor model) but rather that they are simply connected.
This means that although neighbors may be connected, their
connections to other nodes in the network could be stronger
than with each other.

Based on this notion, factor models would likely
find enough common covariance across all variables to
effectively extract one factor but the residual common
covariance would likely be more diffuse across any other
factors, leading to larger loadings on mostly one single
factor with fewer moderate and large loadings on other
factors. For network models (and network loadings by
extension), much of this common covariance is removed
yielding the unique associations between variables. These
unique associations would then be partitioned across any
factors detected, which would likely lead to fewer large
network loadings but an abundance of small to moderate
loadings relative to factor models. Moreover, network
loadings would likely have a greater proportion of cross-
loadings that are of at least a small effect size. These
differences between the two loadings may be informative
for determining whether data were generated from a factor
or network model.

The goal for this simulation was twofold. First, we
generated data from random, factor, and network models
to qualitatively evaluate whether our theoretical rationale
fit the data. Our focus was on examining the descriptive
statistics of the proportion of loadings that were greater than
or equal to small, moderate, and large effect sizes as well as
dominant and cross-loadings greater than or equal to a small
effect size for both network and factor loadings.

Our rationale for using the proportion of loading effect
sizes was to summarize the data structures such that no
matter the number of factors or variables there are an
equivalent number of parameters used for comparison.
By using proportions that are equal to or larger than a
certain effect size, more continuous cut-offs are used that
reduce some of arbitrariness that is inherent in rule-of-
thumb effect sizes. Dominant and cross-loading proportions
were particularly important because we expected that
factor loadings would have larger dominant loadings when
data were generated from a factor model relative to the
other models. Similarly, we expected more network cross-
loadings that were at least a small effect size when data
were generated from a network model relative to the other
models.

Based on these proportion statistics, we then sought to
specify heuristics that could be used to determine whether
data were generated from a random, factor, or network
model. Using these heuristics, we derived an algorithm
called the Loadings Comparison Test (LCT), which we
then investigated using a Monte Carlo simulation. In
this simulation, we generated 15 variables from random,
factor, and network models. In total, we generated 6000
samples from each model and we manipulated conditions
of the factor (correlations between factors) and network
(rewiring probability and neighborhood size) models.
To evaluate the LCT, we computed proportion correct
and confusion matrix metrics for whether the algorithm
could correctly predict the appropriate data generating
model.

Methods

Data generation

In our initial simulation to obtain descriptive statistics
(hereafter referred to as the descriptive simulation), 1000
samples were generated from each model and their asso-
ciated conditions. In the simulation testing our algorithm
(hereafter referred to as the testing simulation), we gen-
erated 6000 samples for each model, which were divided
equally among the conditions within each model (6000 for
random, 1500 per condition for factor, and 400 per condi-
tion for network). All data were generated using continuous
values. Details about the descriptive simulation method
can be found in the Supplementary Information (SI 2).

Randommodel

Fifteen variables were generated from a random normal
distribution with a mean of zero and standard deviation
of five. Next, we computed the variance-covariance
matrix between these variables, performed a Cholesky
decomposition this matrix, and computed the inverse of
the matrix. After, we multiplied the matrix by the original
data to force the variables to have correlations of zero. A
separate 15 × 15 correlation matrix was generated from a
random normal distribution with a mean of 0 and standard
deviation of 0.10 (i.e., zero-order correlations generally
ranged from -.20 to .20). The diagonal of this correlation
matrix was set to 1 and a Cholesky decomposition
was performed. This matrix was then multiplied by
the fifteen variables to obtain our final data values.
There were no conditions to manipulate for the random
model.
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Factor model

We generated data from multivariate normal factor models
following the same procedure as Simulations 1 and 2. For all
factor models, we generated three factors with five variables
per factor (15 variables in total). We only manipulated the
correlations between factors (.00, .30, .50, and .70). As in
our previous simulations, the variance of the cross-loadings
were also adjusted with the magnitude of correlations
between factors (.050, .075, .100, .125, respectively).

Network model

For all network models, fifteen variables were generated
from a GGM small-world network model using the
genGGM function in the bootnet package (Epskamp,
Borsboom, & Fried, 2018a) following the approach of Yin
and Li (2011) and Epskamp, Rhemtulla, and Borsboom
(2017b), and the small-world network algorithm of Watts
and Strogatz (1998). This procedure starts with a network
structure without weights and then draws weights from a
uniform distribution. In order to generate models that are
more closely aligned with data observed in psychology, we
had weights drawn from a uniform distribution ranging from
0.1 and 1 that were made negative with a 30% probability.
In addition, we set the diagonal elements of the matrix to
0.8 (in contrast to the default of 1.5) times the sum of all
absolute values in the corresponding row. These adjustments
increased the maximum weight (partial correlation) from
around 0.16 to 0.32 while also increasing the average non-
zero weights from 0.08 (SD = 0.04) to 0.16 (SD = 0.07)
for data generated from a small-world network model with
15 variables, neighborhood of 4, and rewiring probability
of 0.50. The neighborhood of a small-world network refers
to the number of nodes that each node is connected to in
the initial lattice structure. The rewiring probability refers
to the probability that any one node’s connection would be
randomly connected to another node in the network. We
manipulated both neighborhood (3, 4, and 5) and rewiring
probability (0, 0.25, 0.50, 0.75, and 1). The neighborhood
values were chosen to represent the sparsest possible small-
world network with 15 variables, which require number
of variables (n) > neighborhood > ln(n) > 1 (Watts &
Strogatz, 1998). The network densities corresponding to the
neighborhood values of 3, 4, and 5 were 0.43, 0.57, and
0.71, respectively.

Loadings

For all loadings, absolute values were used. We computed
EFA loadings following the same procedure as Simulation
2. The factor model was estimated using the maximum
likelihood and oblimin rotation. The network loadings were

estimated using the same GLASSO and network loading
procedure described in Simulation 1.

Estimating factors

A key part of obtaining and qualitatively comparing the
factor and network loadings was to estimate the same
number of factors for both. To do so, we estimated
the number of factors using the default EGA approach,
which estimates the GLASSO with EBIC model selection
(as described in Simulation 1) and applies the Walktrap
algorithm (Pons & Latapy, 2006). The Walktrap algorithm
begins by computing a transition matrix where each element
represents the probability (based on node strength) of one
node traversing to another. Using Ward’s agglomerative
clustering approach (Ward, 1963), each node starts as its
own cluster and merges with adjacent clusters (based on
squared distances between each cluster) in a way that
minimizes the sum of squared distances between other
clusters. A statistic calledmodularity (or the extent to which
nodes have more connections within their respective cluster
and fewer connections with other clusters; Newman, 2006)
is used to determine the optimal partition of clusters (i.e.,
factors).

The Walktrap algorithm, as implemented in igraph
(Csardi & Nepusz, 2006), is deterministic meaning that it
always returns the same number of factors and allocation of
variables in those factors given a network structure. For the
network model, the number of factors and item allocations
were used to compute the network loadings. The allocation
of variables were used to determine dominant and non-
dominant (i.e., cross-) loadings. For the factor model, the
number of factors returned by the algorithm was then used
as the number of factors estimated in the EFA model. The
variables of the EFA model were then assigned to the factor
which had their largest absolute loading. This allowed us to
define loadings as dominant or non-dominant.

Statistical analyses

We computed measures based on the confusion matrix of
the algorithm accurately predicting the true data generating
model. To provide an example, we use the random model
as the model under consideration. A true positive (TP)
was when the predicted and true generating model matched
the model under consideration (e.g., random). A true
negative (TN) was when the predicted and true generating
model (e.g., factor or network) were not the model under
consideration (e.g., random). A false positive (FP) was when
the predicted generating model matched the model under
consideration (e.g., random) but not the true generation
model (e.g., factor or network). A false negative (FN)
was when the predicted generating model (e.g., factor or
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network) did not match the model true generating model and
model under consideration (e.g., random).

Using this confusion matrix, we computed sensi-
tivity ( T P

T P+FN
), specificity ( T N

T N+FP
), false discovery

rate (FDR; FP
FP+T P

), accuracy ( T P+T N
T P+FP+T N+FN

),
and Matthews correlation coefficient (MCC;

(T P×T N)−(FP×FN)√
(T P+FP)×(T P+FN)×(T N+FP)×(T N+FN)

). Sensitivity is

the proportion of TPs that are correctly identified as TPs,
while specificity is the proportion of TNs that are correctly
identified as TNs. The FDR is the proportion of FPs that are
found relative to the total positives that are predicted by the
algorithm. Accuracy is the proportion of correct predictions
(TPs and TNs) of the algorithm, representing an overall
summary of sensitivity and specificity. Finally, the MCC
is considered to the best overall metric for classification
evaluation because it is an unbiased measure that uses all
aspects of the confusion matrix, representing a special case
of the phi coefficient between the predicted and true model
(Chicco & Jurman, 2020).

Results

We present and discuss the results of the descriptive
simulation as well as the heuristics we used for the LCT
algorithm in the Supplementary Information (SI 2).

Testing simulation

Using the LCT, we performed a testing simulation to
evaluate its performance. The algorithm is deterministic
meaning that it will provide a single prediction for the
data generating model. The effectiveness of the LCT was
contextualized using the percent of correctly predicted
models within each condition (Table 1) and confusion
matrix metrics across all conditions (Table 2).

As shown in Table 1, the LCT performed very well across
all models and conditions. The lowest accuracy (77.9%)
for the LCT was for factor models with large correlations
(.70) between factors. This is not surprising given that the
factor models were most descriptively like the network
models (see SI 2). Statistically, factor models with such
large correlations between factors are more likely to appear
like network models because they will tend to have cross-
loadings that create a covariance structure that is similar to
networks. To get a better understanding of howwell the LCT
performed as an overall predictive model, we examined its
confusion matrix (Table 2).

Across all confusion matrix metrics, the LCT performed
very well. The LCT had high sensitivity and specificity for
all models (all > .90). These metrics are further reflected
in the accuracy where the proportion of correctly predicted

Table 1 Loadings comparison test percent correct by condition

Model Condition Rewiring probability Percent correct (%)

Random 95.7

Factor .00 100

.30 100

.50 98.6

.70 77.9

Network 3 0 88.2

.25 91.5

.50 95.8

.75 90.2

1 92.2

0 87.8

.25 90.8

.50 94.0

.75 94.8

1 95.0

5 0 94.8

.25 93.2

.50 93.8

.75 94.2

1 95.5

Note. For the factor models, condition is the correlation between
factors; for the network models, condition is the neighborhood

(TPs) and correctly not predicted (TNs) models were above
.90. When considering FDR, random models were rarely
predicted other than when they were the true model. The
value of 0.013 suggests that out of 100 models predicted
to be a random model only one was not actually a random
model. For factor models, about 6 of 100 models that were
predicted to be a factor model were not actually a factor
model. For network models, about 1 in 10 models that
were predicted to be a network model were actually not.
The higher FDR for network models was largely driven

Table 2 Loadings comparison test confusion matrix

Model

Random Factor Network

Sensitivity 0.957 0.941 0.928

Specificity 0.994 0.970 0.949

FDR 0.013 0.059 0.099

Accuracy 0.981 0.961 0.942

MCC 0.958 0.911 0.871

Note. All models had 6000 samples in total. FDR = false discovery
rate and MCC = Matthews correlation coefficient
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by factor models with large correlations between factors
(.70) where all incorrect LCT predictions were network
models (22.1%). Indeed, when this condition is removed,
the network’s FDR is cut in half (0.05 or 1 in 20 models
that were predicted to be a network model were actually
not). Finally, the MCC was large across all models. Because
the MCC is equivalent to the phi coefficient, its effect
size can be interpreted the same (Powers, 2011). Therefore,
the values can be interpreted as correlation coefficients
making them substantially large effect sizes across models.
In sum, the LCT was highly effective at predicting the data
generating model.

Discussion

This study sought to derive and evaluate a modified node
strength measure (i.e., network loadings) that separated
specific contributions of latent causes. Our study builds
on the results and recommendations from Hallquist et al.
(2019) simulation studies. In our first simulation, we
demonstrated that when node strength is modified to be
split between latent causes it is no longer affected by
latent confounding and can sufficiently account for multiple
latent causes. In our second simulation, we submitted these
network loadings to a more general context where they were
evaluated across a variety of data conditions and compared
against EFA and CFA loadings. In large part, our results
demonstrate that these network loadings can accurately
recover the population loadings of a factor model and are
more closely related to EFA loadings. Finally, we evaluated
whether network and factor loadings remained similar when
the data generating model was not a factor model. We found
that the loadings differed enough to derive a highly sensitive
and specific algorithm for predicting the data generating
model.

As a general takeaway, it’s important to point out that
the factor and network loadings were not a strict one-
to-one equivalency but rather provided roughly equivalent
information when the generating model was a factor
model. This was made most clear in Simulation 2 and 3
where network loadings were roughly equivalent to factor
loadings only when the data generating model was a factor
model. When the model was a random model, the factor
loadings did not have much information (in regard to the
magnitude of loading) relative to network loadings. When
the data was a small-world network model, the factor
loadings were much more alike a factor model; however, the
cross-loadings appeared to be restricted relative to the
network loadings.

Although factor and network loadings are similar when
the data generating model was a factor model, it’s the
selection and representation of the model that implies a

specific causal interpretation (Borsboom, 2006; Bringmann
& Eronen, 2018). It’s plausible that a factor actually
represents an emergent property of a collection of variables
while it’s equally plausible that a collection of variables in
a network represents a common cause (Guyon, Falissard, &
Kop 2017; Kruis & Maris 2016; van der Maas et al., 2006).
For factor models, their representation implies that a latent
variable causes the relations between variables; for network
models, their representation implies that the variables
co-occur through causal relations and that dimensions
emerge from these relations (Bringmann & Eronen, 2018;
Christensen et al., 2020; Marsman et al., 2018). Therefore,
the equivalence of factor and network loadings (in factor
models) is of relatively no consequence statistically, but
matters theoretically.

This difference in substantive interpretation is what
largely separates factor models from network models
(Bringmann & Eronen, 2018; Christensen et al., 2020;
Marsman et al., 2018). Factor loadings refer to how well an
indicator measures an underlying common cause; network
loadings refer to the coupling of components that lead
to the emergence of “factors” in a causal system. In this
sense, network loadings represent each node’s (unique)
contribution to the emergence of a coherent dimension (or
collection of related variables) in the network (Christensen
et al., 2020). From this perspective, it is the researcher’s
hypothesis about the data generating mechanisms that
should align with the psychometric model they select, which
in turn shapes the way they interpret the statistics of their
model. This does not mean that researchers cannot use
a network model to identify the latent factor structure
of their data (e.g., Golino et al., 2020b), but it does
suggest that researchers must be wary of what their model
implies (Borsboom, 2006). In general, the LCT provides
researchers with a starting point for what model may be
most appropriate for their data, allowing for more informed
decisions about how their data should be interpreted.

Implications

The results from our simulations have several implications
for the use of network models in measurement and assess-
ment. One implication comes from our third simulation,
which demonstrates how researchers could structure the
relationships of their data to mirror their data generating
hypothesis. This means that for network models variables
should be unique and causally autonomous to avoid latent
confounding (Hallquist et al., 2019) but also to better align
with network theory (Christensen et al., 2020; Cramer et al.,
2012). Thus, the LCT could be used, for example, to deter-
mine whether the structure of a researcher’s assessment
instrument agrees with their data generating hypothesis and
provide direction for when it does not.
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Another implication extending from our first and second
simulation is that network loadings can be used in an
equivalent way as factor loadings, providing many of
the same measurement opportunities as factor models. A
network loading matrix, for example, can be derived and
used for item selection in scale development and validation
(DeVellis, 2017). Results from our second simulation
identified effect size guidelines that correspond with
traditional factor loading guidelines: small (0.15), moderate
(0.25), and large (0.35) network loadings. These guidelines
should be of particular utility for applied researchers and
those validating scales from the network perspective (for a
review, see Christensen et al., 2020). Our findings also open
the door to computing measurement invariance measures
such as metric equivalence of network loadings.

In addition, we suggest that network loadings can
be used to derive a weighted between-person score for
each participant (or the network equivalent of factor
scores). This implication in particular requires more detailed
attention. Specifically, how should a network score be
computed and substantively interpreted? When considering
a network of extraversion components, for example, the
network itself references the state of the system—that
is, the extent to which the network is in an extraverted
state (Christensen et al., 2020). From this perspective,
extraversion represents a summary statistic of how variables
in the network are influenced by one another (Cramer,
2012). Therefore, a network score is more analogous to
a formative latent variable (i.e., a weighted composite)
than a reflective latent variable (i.e., common covariance).
This substantive explanation suggests that a network score
should be computed as a weighted composite, which could
be derived from each dimension’s sum of the product
between its respective network loadings and each person’s
corresponding variable scores (Guttman, 1953, Theorem 3).
Indeed, in a simulation capturing dynamic factor scores,
these network scores correlated with factor scores between
.90 and .99 in dichotomous and continuous data (Golino,
Christensen, Moulder, Kim, & Boker, 2020a).

Limitations

The computation of the network loadings possesses a few
limitations. First, the computation starts with the network
estimation method (e.g., GLASSO), which determines
the structure of the network (i.e., how the variables are
connected to one another). From this structure, a community
detection algorithm (e.g., Walktrap) is applied to estimate
the number of factors in the network as well as which
items belong to those factors. The network loadings
for each variable are then computed based on how the
items were allocated. In a random model, for example,
spurious communities that reflect sampling variability may

be identified and therefore network loadings would reflect
loadings onto spurious factors.

This means that the computation of the network loadings
is affected by both the network estimation method and
community detection algorithm. For the GLASSO, this
means that for smaller sample sizes (e.g., 250) there may
be fewer connections in the network than when the sample
size is large (e.g., 1000). Although larger edges are likely
to remain, smaller values in the larger sample may not
be included in the network of the smaller sample and
therefore will not be included in the computation of the
network loadings, effectively lowering the reliability of the
estimates. Similarly, the community detection algorithm’s
accuracy for the number of dimensions and placement of
nodes will be affected. Specifically, they will be less reliable
when the sample size is small (Golino et al., 2020b). In
addition, small loadings or large cross-loadings will also
affect the accuracy of the algorithm’s placement of variables
into factors (Christensen & Golino, 2020), which in turn
affects the reliability of the estimates.

These effects all flow downstream into the computation
of the network loadings. For small sample sizes, it’s likely
that the estimates for the network loadings will be smaller
than the population loadings due to sparser information in
the network. Small sample sizes and less-defined factor
structures will also lead divergences away from population
loadings of a factor model through less accurate placements
of items. Moreover, different placements of items into
factors will also affect the magnitude of the loadings.
Therefore, the computation of network loadings depends on
the accurate estimation of the network’s structure and the
factors that are obtained from that structure.

Another limitation is the potential for one data generating
model to produce a data structure that is more similar to
another data generating model. It’s possible, for example, to
generate data from a factor model that has large correlated
residuals, which has a data structure that is more like a
network model than a factor model. Similarly, generating a
random correlation matrix with large correlations between
variables will produce a structure that is more like a dense
network model.3 Thus, the parameters of each of these
models could be manipulated in a way to reflect a data
structure that corresponds to other data generating models.
In this way, the LCT can be used as a tool to better
understand the most likely data generating mechanism given
the data’s structure, but must be tempered with theoretical
expectations.

Finally, the LCT is based on descriptive heuristics
from a limited set of conditions. We think that it’s

3Indeed, when generating random correlation matrices (n = 3,000)
with correlations between 0.60 and 0.80, the LCT suggests that a
network model is the data generating model for three-quarters of the
samples (76.4%) and a random model for the rest.
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unlikely that these set of heuristics will generalize across
all data structures and conditions. We view the LCT
as a promising first step towards a tool for predicting
the underlying data generating mechanism. Future work
should consider machine learning methods that are able
to better approximate the underlying data generating
function than the human-based heuristics used in the
current implementation (Hastie, Tibshirani, & Friedman,
2017). Such methods may also provide a more continuous
prediction about the data generating model (e.g., likelihood
the model is one model or another) rather than the single
prediction made by the current implementation.

Conclusion

In conclusion, the statistical equivalency between factor and
network models is well documented (Golino & Epskamp,
2017; Guttman, 1953; Marsman et al., 2018; van Bork
et al., 2019). Our simulation studies provide differential
evidence of this equivalency by evaluating factor and
network loadings in random, factor, and network models.
We argue that the statistical equivalency in factor models is
of (relatively) no consequence and it is the representation
and theoretical implications of these models that matters.
We echo calls from many others that urge researchers to
think critically about the psychometric model they use and
the data generating mechanisms that they imply (Borsboom,
2006). After all, “the mapping from statistical association
structure to a generating causal structure is typically one-
to-many” (Marsman et al., 2018, p. 26), which suggests
that it is the representation and interpretation of the model
that provides meaning to equivalent statistical structures
of the data. Finally, we provide an algorithmic test to
predict the model generating the data so that researchers
can make more informed decisions about which model
may be most appropriate and whether the data’s structure
matches their expectations. Future work should continue to
evaluate the extent to which factor and network models are
equivalent.
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