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Abstract

Identifying the correct number of factors in multivariate data is fundamental to psychological measurement. Factor analysis
has a long tradition in the field, but it has been challenged recently by exploratory graph analysis (EGA), an approach based
on network psychometrics. EGA first estimates a network and then applies the Walktrap community detection algorithm.
Simulation studies have demonstrated that EGA has comparable or better accuracy for recovering the same number of
communities as there are factors in the simulated data than factor analytic methods. Despite EGA’s effectiveness, there has
yet to be an investigation into whether other sparsity induction methods or community detection algorithms could achieve
equivalent or better performance. Furthermore, unidimensional structures are fundamental to psychological measurement yet
they have been sparsely studied in simulations using community detection algorithms. In the present study, we performed
a Monte Carlo simulation using the zero-order correlation matrix, GLASSO, and two variants of a non-regularized partial
correlation sparsity induction methods with several community detection algorithms. We examined the performance of these
method—algorithm combinations in both continuous and polytomous data across a variety of conditions. The results indicate
that the Fast-greedy, Louvain, and Walktrap algorithms paired with the GLASSO method were consistently among the most
accurate and least-biased overall.
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Many psychological phenomena are complex systems of
related variables. These variables often form distinct sets
of variables where there are many relations between some
variables relative to others. In network analysis, these sets
of connected variables are often referred to as communities
(Fortunato, 2010). These communities are statistically con-
sistent with latent factors in factor analysis when data are
generated from a factor model (Golino & Epskamp, 2017
Golino et al., 2020b). Identifying latent factors in psycho-
logical data such as questionnaires, symptom checklists, and
ability tests is important for theory, scale construction and
validation, and statistical analyses in psychology (Cattell,
1978).
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A recent method called exploratory graph analysis (EGA,;
Golino & Epskamp, 2017; Golino et al., 2020b) was imple-
mented as an approach to identify dimensions in psycholog-
ical data. EGA uses a network modeling framework, often
referred to as network psychometrics (Epskamp, Maris, Wal-
drop, & Borsboom, 2018), to first estimate a network and
then communities' (Golino & Epskamp 2017; Golino et al.,
2020b). The default EGA algorithm first applies the graphical
least absolute shrinkage and selection operator (GLASSO;

! The term “community” comes from network analysis’s rich history in
sociology in the form of social networks where groups of nodes (people)
may actually represent communities (Plantié & Crampes, 2012). The
term “cluster” has also been used to describe groups of nodes as many
algorithms used to identify communities in networks are based on tra-
ditional clustering methods and therefore represent the partitioning of
nodes as a clustering problem. We opted to use the term “community”
to represent the broader class of algorithms used to identify groups of
nodes in networks which consist of traditional clustering methods such
as K-means (Brusco, Steinley, & Watts, 2022b) and hierarchical (Pons &
Latapy, 2006), modularity-based methods (Blondel, Guillaume, Lam-
biotte, & Lefebvre, 2008; Clauset, Newman, & Moore, 2004), spectral
approaches (Brusco, Steinley, & Watts, 2021; Newman, 2006a), and
other algorithms (Fortunato, 2010).
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Friedman, Hastie, & Tibshirani, 2008; Friedman, Hastie, &
Tibshirani, 2014) to the inverse covariance matrix to esti-
mate a Gaussian graphical model (GGM; Lauritzen, 1996)
where edges (lines) represent (partial) correlations between
nodes (circles), which represent variables in the network.
The extended Bayesian information criterion (EBIC; Chen
& Chen, 2008) is used to select a model from a range of hyper-
parameter values used in the GLASSO algorithm (Foygel &
Drton, 2010).

Afterwards, EGA applies the Walktrap community detec-
tion algorithm (Pons & Latapy, 2006), which uses random
walks to determine the number and content of the communi-
ties in the network. Simulation studies have demonstrated
that EGA recovers the number of simulated factors as
accurately as or more accurate than most factor analytic
approaches (e.g., parallel analysis; Golino & Epskamp,
2017). A recent addition to the algorithm provides a so-called
“unidimensionality adjustment” that enables the Walktrap
algorithm to detect unidimensional structures (Golino et al.,
2020Db).

Despite the effectiveness of EGA to recover the number
of simulated factors, there are many methods to estimate net-
works or induce sparsity that results in the reduction of the
number of parameters (edges) in the model (Epskamp, Kruis,
& Marsman, 2017). Some network estimation methods may
be as effective or more effective than the present default of
the GLASSO (e.g., Isvoranu & Epskamp, 2021). Similarly,
there are several community detection algorithms that may
be as effective or more effective than the present default of
the Walktrap (Brusco, Steinley, & Watts, 2022a; e.g., Brusco
etal., 2022b). Finally, the unidimensionality adjustment pro-
posed by Golino et al. (2020b) warrants a more extensive
investigation to evaluate limitations of the approach. Using
a Monte Carlo simulation, our study evaluates each compo-
nent of EGA’s algorithm to determine whether the present
defaults are optimal.

Alternative network estimation methods

The structure of a network has a strong influence on the num-
ber and content of communities detected by a community
detection algorithm. One simulation study examined con-
tinuous and dichotomous data and compared the accuracy
of the GLASSO and triangulated maximally filtered graph
(TMFG; Massara, Di Matteo, & Aste, 2016) network estima-
tion methods combined with the Walktrap algorithm (Golino
et al., 2020b). This study found that the GLASSO method
had better accuracy and less bias than the TMFG but both
performed comparably well to the traditional factor analytic
techniques (i.e., parallel analysis).

Other network estimation methods commonly used in
psychometric networks such as non-regularized GGMs
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(Williams & Rast, 2018; Williams, Rhemtulla, Wysocki, &
Rast, 2019) and Bayesian GGMs (Williams, 2021; Williams
& Mulder, 2020) have been put forward in the literature.
The non-regularized methods in particular are shown to bet-
ter recover the edges in dense (highly connected) simulated
networks, which are thought to be common in psychol-
ogy (Williams & Rast, 2018; Wysocki & Rhemtulla, 2019).
Because of their better edge recovery in simulated networks,
this study investigated whether they would also perform bet-
ter when recovering the number of simulated factors when
data are generated by a factor model.

Alternative community detection algorithms

There have been many simulation studies comparing differ-
ent community detection algorithms (Brusco et al., 2021;
e.g., Brusco et al., 2022b; Gates, Henry, Steinley, & Fair,
2016; Yang, Algesheimer, & Tessone, 2016) but none, to our
knowledge, have generated data from latent factor models
with relatively few total variables (e.g., < 50), few variables
per factor (e.g., < 12), and unidimensional structures. In
general, most community detection algorithms were devel-
oped and validated on networks containing a large number of
nodes (e.g., > 1,000; Lancichinetti & Fortunato, 2009; Yang
etal.,2016). Some studies have demonstrated that these algo-
rithms may only work well for one type of problem or data
structure (Yang et al., 2022a; Gates et al., 2016). Gates and
colleagues (Gates et al., 2016), for example, examined sev-
eral community detection algorithms in structures that are
common in brain network data. In their study, they gener-
ated network structures using factor models and manipulated
several conditions that included the number of nodes (rang-
ing from 25 to 1000) and communities (ranging from 1 to
20), size of edge weights (i.e., correlation between variables),
and overlap between communities (i.e., cross-loadings and
correlations between factors). Their study examined how
community detection algorithms, when applied to correla-
tion and Euclidean distance matrices of continuous data,
performed with respect to accuracy in recovering the proper
placement of nodes in the communities. Of the six algorithms
they examined, the Walktrap and Louvain (2008) algorithms
performed the best across conditions. Importantly, their study
investigated conditions where there were a small number of
nodes (i.e., 25 and 75) and some correlations between factors
(0.10).

Because most networks in the psychometric network lit-
erature consist of fewer than 100 nodes (89% between 0
and 30 nodes; Wysocki & Rhemtulla, 2019), there is a need
to verify which of these algorithms work best in conditions
that are more commonly found in questionnaires, symptom
checklists, and ability tests such as dichotomous and poly-
tomous data (Golino et al., 2020b). These data also tend to
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follow latent factor model conventions (i.e., simple struc-
ture with small cross-loadings) because of factor analysis’s
rich psychometric tradition in psychology. Although Gates
and colleagues (2016) evaluated some conditions that might
traditionally reflect psychological data (25 nodes and 2-5
communities), these conditions were not the focus of their
study and consequently the generalizability of their results
to psychometric network modeling limited. Our simulation
presents an evaluation of these algorithms across many com-
mon factor analytic conditions and present these results in
factor analytic terms to provide more fruitful usage guide-
lines for applied researchers in psychology.

Unidimensionality and community detection
algorithms

Unidimensionality is fundamental to psychological mea-
surement yet, to our knowledge, there have been only two
simulation studies that have evaluated the performance of
community detection algorithms with unidimensional struc-
tures (Gates et al., 2016; Golino et al., 2020b). Gates
et al. (2016) evaluated unidimensional structures in networks
with 1000 nodes. They found that the Infomap (Rosvall &
Bergstrom, 2008) and Label Propagation (Raghavan, Albert,
& Kumara, 2007) algorithms had near perfect accuracy in the
unidimensional conditions, while Fast-greedy (Clauset et al.,
2004), Leading Eigenvalue (Newman, 2006b), and Louvain
(Blondel et al., 2008) had near zero accuracy. In these con-
ditions, the Walktrap algorithm had variable accuracy when
using correlation matrices and had near zero accuracy when
using Euclidean distance matrices.

Golino et al. (2020b) evaluated unidimensional struc-
tures across a variety of conditions including sample size,
factor loadings, number of variables, and data types (contin-
uous and dichotomous). Their simulation only evaluated the
Walktrap algorithm and applied network estimation methods,
GLASSO and TMFG, and did not evaluate the zero-order
correlation matrix as in Gates and colleagues’ (2016) sim-
ulation. Golino et al. explain that the Walktrap algorithm is
not expected to work well with unidimensional structures
because the modularity measure that is used to select the
best partition penalizes unidimensional solutions (Newman,
2006b). Consistent with this notion, the algorithms that used
modularity, in one way or another, performed poorly in the
unidimensional condition in Gates et al.’s (2016) study.

To circumvent this issue, Golino and colleagues (2020a)
proposed generating four variables thatload strongly (.70) on
a single factor that is orthogonal to the empirical data. EGA
is then applied to the combined simulated and empirical data.
If two (or fewer) communities are returned (one community
representing the simulated data and the other representing
the empirical data), then the data are suggested to be unidi-
mensional; otherwise, EGA is applied to the empirical data

only. This so-called “unidimensional adjustment” appeared
to work well and was on par with the best-performing fac-
tor analytic methods (e.g., parallel analysis with PCA) in
the unidimensional conditions. Given the importance of uni-
dimensional structures in psychology (e.g., Slocum-Gori &
Zumbo, 2011), it is necessary to further investigate the effec-
tiveness of this approach and whether it is appropriate for all
community detection algorithms.

Simulation aims

The present simulation had three aims: determine whether an
alternative network method, such as non-regularized GGMs
or zero-order correlations, perform better than the stan-
dard EGA method of applying the GLASSO. We focus
on non-regularized GGMs because of their relative supe-
rior performance in simulations looking at the sensitivity
and specificity of edge detection (Williams & Rast, 2018;
Williams et al., 2019). The second aim was to examine
several freely available algorithms that were used in Gates
et al.’s (2016) simulation study as well as other algorithms
included in the popular software package {igraph} (version
1.2.6; Csardi & Nepusz, 2006) in R (version 4.1.0; R Core
Team 2022). The third aim was to determine whether the uni-
dimensionality adjustment applied in Golino et al. (2020b)
improves the accuracy of some or all community detection
algorithms.

Our simulation study differed from previous studies that
have compared these network estimation methods and com-
munity detection algorithms in a couple ways. First, this
study specifically analyzed the accurate recovery of the num-
ber of factors when data are generated from a factor model
rather than whether the edges in simulated networks were
recovered (Williams et al., 2019). Second, the present simula-
tion generates data that align with conditions more commonly
found in psychological data (i.e., questionnaires, symptom
checklists, and ability tests); specifically, multivariate data
that are polytomous with skew, have a relatively few variables
per factor (e.g., 4, 8, and 12), and different magnitudes of cor-
relations between factors (e.g.,.00,.30,.50, and.70). To date,
EGA and other comparisons of network estimation methods
and community detection algorithms have largely focused on
continuous or dichotomous data (Gates et al., 2016; Golino
& Epskamp, 2017; Golino et al., 2020b; Hoffman, Steinley,
Gates, Prinstein, & Brusco, 2018; Lancichinetti & Fortunato,
2009; Yang et al., 2016). Our study is the first, to our knowl-
edge, that compares the performance of network estimation
methods and community detection algorithms in polytomous
data with skew. Finally, we provide an empirical example to
demonstrate how these method—algorithm combinations per-
form on real data.

@ Springer
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Methods
Simulation design

The population models were simulated from a multivari-
ate normal distribution with a covariance matrix calculated
using a latent variable model framework. The factor loadings
were randomly drawn from a uniform distribution. These
factor loadings were manipulated to be small (0.30-0.50),
moderate (0.45-0.65), and large (0.60-0.80). For brevity, the
midpoints are referred to as small (0.40), moderate (0.55),
and large (0.70). Cross-loadings were randomly drawn from
a normal distribution with a mean of zero and a standard
deviation of 0.10. The correlation between factors of orthog-
onal (0.00), small (0.30), moderate (0.50), and large (0.70)
as well as sample size of small (250), moderate (500), large
(1000), and very large (5000) were also manipulated. The
number of factors—one, two, and four—were simulated to
provide unidimensional and multidimensional structures that
are commonly found in the psychological literature (Henson
& Roberts, 2006). There were four, eight, and 12 variables
per factor, which represented conditions common in scale
development and validation.

The simulation design of the current study allowed for
a mixed factorial design: 2 x 4 x 4 x 3 x 3 x 3 x 2
(unidimensional adjustment x factor correlations x sample
size x number of factors x number of variables x factor
loadings x data type). Because factor correlations are not
applicable to unidimensional structures, there were 1728 total
condition combinations, but only 1296 of those were unique
(when structures were unidimensional, then all conditions
were replicated four times because of the correlation between
factors). The oversampling of the unidimensional conditions
was to evaluate the unidimensional adjustment of Golino
et al. (2020b) more thoroughly. Each method—algorithm was
applied to all condition combinations. There were 100 sam-
ples generated for all condition combinations.

Data generation

We generated data from multivariate normal factor models
following the same approach as Golino et al. (2020b). First,
the reproduced population correlation matrix was computed:

R = Q0Q/,

where RR is the reproduced population correlation matrix,
@ is the k (variables) x r (factors) factor loading matrix,2

2 The traditional notation for factor loadings matrix is A; however, to
avoid confusion with the GLASSO’s lambda parameter (1), we use
omega (£2).
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and @ is the » x r correlation matrix. The population corre-
lation matrix, Rp, was then obtained by putting the unities
on the diagonal of Rr. Next, Cholesky decomposition was
performed on the correlation matrix such that:

Rp = U'U.

If the population correlation matrix was not positive def-
inite (i.e., at least one eigenvalue < 0) or any single item’s
communality was greater than 0.90, then §2 was re-generated
and the same procedure was followed until these criteria are
met. Finally, the sample data matrix of continuous variables
was computed:

X =7ZU,

where Z is a matrix of random multivariate normal data with
rows equal to the sample size and columns equal to the num-
ber of variables.

To generate polytomous data, each continuous variable
was categorized into five categories, resembling a five-point
Likert scale, with a random skew ranging from -2 to 2 on a
0.5 interval from a random uniform distribution by using the
thresholds from Garrido, Abad, and Ponsoda (2011; 2013).
A table containing the threshold values to categorize the con-
tinuous data at each skew value is provided below (Table 1).
Although variables on the same factor could have oppo-
site skew, polychoric correlations preserve the structure of
the continuous variables with sufficiently large sample size
(Garrido et al., 2013). We provide an example R script to
demonstrate this point (see Supplementary Information; SI

D).
Modeling methods
GLASSO network estimation

The GLASSO uses the least absolute shrinkage and selection
operator (LASSO; Tibshirani, 1996), which is a regulariza-
tion technique that reduces parameter estimates, with some
estimates becoming exactly zero (for the mathematical nota-
tion, see Epskamp & Fried, 2018). The aim of this technique
is to achieve a sparse network model—non-relevant edges are
removed from the model, leaving only a subset of relevant
(not necessarily significant) edges.

This sparsity is controlled by a parameter called lambda
(1). Lower values of A remove fewer edges, increasing the
possibility of including spurious associations, while larger
values of A remove more edges, increasing the possibility of
removing relevant edges. When A = 0, then the estimates are
equal to the ordinary least squares solution (i.e., the partial
correlation matrix). This parameter is an important part of



Behavior Research Methods

Table 1 Skew table for

Skew value
polytomous data Threshold (< | >) =2 I S— 05 0 03 T 5 2
112 177 —162 —144 —116 —084 —034 005 041 0.68
213 134  —1.16 —094 —063 —025 016 051 078 1.00
314 100 —078 —051 —0.16 025 063 094 116 134
415 —068 —041 —005 034 084 116 144 162 177

Note. Values are rounded to the nearest hundredths place. Thresholds on the left are less than (< |) the value
and thresholds on the right are greater than or equal to (| >) the value

model selection, striking a balance between sensitivity (i.e.,
selecting relevant edges that are truly relevant) and specificity
(i.e., removing edges that are truly not relevant).

The popular approach in the network psychometrics litera-
ture is to compute models across several values of A (usually
100) and to select the model that minimizes the extended
Bayesian information criterion (EBIC; Chen & Chen, 2008;
Epskamp & Fried, 2018). The EBIC model selection uses
a hyperparameter (y) to control how much it prefers sim-
pler models (i.e., models with fewer edges; Foygel & Drton,
2010). Larger y values lead to simpler models, while smaller
y values lead to denser models. When y = 0, the EBIC
is equal to the Bayesian information criterion. In the psy-
chometric network literature, this approach has been termed
EBICglasso and is applied via the {qgraph} package (ver-
sion 1.6.9; Epskamp, Cramer, Waldorp, Schmittmann, &
Borsboom, 2012) in R. For continuous data, Pearson’s cor-
relations were computed; for polytomous data, polychoric
correlations were computed (but see Isvoranu & Epskamp,
2021 for criticisms).

Following the EGA approach (Golino et al., 2020b), the
minimum A value is set to 0.10, which is slightly larger than
the default of 0.01 in {qgraph} (Epskamp et al., 2012). This
larger value is selected to reduce the prevalence of false pos-
itive edges in the network. Next, the y value is set to 0.50,
which is the default; however, it is iteratively decreased by
0.25 when there is at least one node in the network that is
disconnected. If y reaches 0.00, then the network is used
regardless of whether any nodes are disconnected.

Non-regularized network estimation

Two variants of a non-regularized partial correlation sparsity
induction method were used. Both methods were based on
a regression strategy called neighborhood selection, which
uses node-wise multiple regression on each node in the
network (Guttman, 1953; Williams et al., 2019). Multiple
regression coefficients have a direct correspondence to the
inverse covariance coefficients in that the negative regression
coefficient (—B;;) divided by the predictor variable’s variance

(o}) is equal to the inverse covariance between the regressed
variable and the predictor variable given all other variables
(0i)).

The neighborhood selection method used by Williams
et al. (2019) places the multiple regression coefficients for
each regressed variable across the row of each target vari-
able with the regressed variable’s variance in its respective
element’s position (95; i.e., variance of each variable is
on the diagonal). A common method for computing par-
tial correlations is to take the square root of the product
between the absolute values of the regression coefficients
(i.e., elements) in the matrix and replace their signs (i.e.,
pij = sign(Bij)/1Bijl x 1Bjil,i # j). This leads to an
asymmetric covariance matrix where coefficients do not cor-
respond to their respective transpose element (i.e., 91.21. # 9]21. ).

There are two approaches for determining whether an edge
should be non-zero: the “and-rule” where both g;; and B;
must be non-zero and the “or-rule” where only one coef-
ficient must be non-zero. Both approaches use a forward
search strategy for determining non-zero coefficients, which
removes predictor variables from each multiple regression
that minimize some criterion until the minimum value of
the criterion is achieved for the set of predictor variables.
The coefficients that are not removed in the process of min-
imizing the criterion are retained in the network as non-zero
edges, while the removed variables are set to zero. The final
networks have zeros on the diagonal.

The criterion used for determining included and excluded
coefficients is based on traditional model selection criteria
AIC and BIC. The main difference between these criteria
is that the BIC tends to penalize more complex models
more severely than the AIC. For this study, we examined
both the AIC and BIC approaches to edge selection with
the “and-rule” because they were shown to have consider-
able improvements (relative to the “or-rule”) in recovering
the true edges in the population network structure in previ-
ous simulations (Williams et al., 2019). Both non-regularized
partial correlation network models were estimated using the
{GGMnonreg} package (version 1.0.0; Williams, 2019) in
R.

@ Springer
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Non-sparsity comparison

For the non-sparsity comparison method, we applied the
community detection algorithms to the zero-order correlation
matrix, which is a common approach used in the litera-
ture (Gates et al., 2016). Because the zero-order correlation
matrix does not induce sparsity and community detection
algorithms can be applied directly to them, it serves as a
valuable benchmark for whether (1) the unidimensionality
adjustment is necessary for certain algorithms and (2) spar-
sity induction methods improve or inhibit the performance of
community recovery in data generated from factor models.

Parallel analysis comparison

We also applied two parallel analysis algorithms—PAF and
PCA. These two algorithms were chosen because they have
been extensively evaluated in the literature (e.g., Garrido
et al., 2013) and have shown comparable performance with
EGA in a previous simulation study (Golino et al., 2020b). In
short, parallel analysis generates a large number of replicate
datasets by randomly resampling values from each variable
from the original dataset (Horn, 1965). The number of fac-
tors (PAF) or components (PCA) whose eigenvalues in the
original dataset are greater than the mean of the resampled
datasets is suggested as the factor solution. The PAF models
were estimated using the minimum residual estimator.

Community detection algorithms

This study focused on eight different community detection
algorithms that are available in the {igraph} package. These
algorithms are Walktrap (Pons & Latapy, 2006), Infomap
(Rosvall & Bergstrom, 2008), Fast-greedy (Clauset et al.,
2004), Louvain (Blondel et al., 2008), Leading Eigenvalue
(Newman, 2006b), Label Propagation (Raghavan et al.,
2007), Spinglass (Reichardt & Bornholdt, 2006), and Edge
Betweenness (Girvan & Newman, 2002).

All community detection algorithms were implemented
with their default arguments in order to evaluate their
baseline, “out-of-the-box” performance without researcher
direction (similar to Gates et al., 2016). Moreover, all net-
work matrices were input with absolute values to avoid the
bias of some methods performing better than others because
of their ability to handle negative associations. In practice,
absolute values would only be used for community detection
and subsequent statistical measures would use the signed val-
ues of the network. Below, we briefly describe modularity, a
metric used to quantify the quality of community partitions,
and then each algorithm (more detailed information can be
found within their respective citations).
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Modularity

A key definition for understanding many community detec-
tion algorithms is the concept of modularity (Newman,
2006b). Modularity can be expressed as (Fan, Li, Zhang,
Wu, & Di, 2007):

1 Wi w;
0= w Z(wij - W> 8(ci, cj),

tj

where w;; is the edge strength or (partial) correlation for a
given node pair, and w; and w; are the node strength for
node i and node j (respectively), w is the sum of all the edge
weights in the network, ¢; and c; represents the community
that node i and node j belong to (respectively), and § is 1 if
the nodes belong to the same community (i.e., ¢; = ¢;) and
0 if otherwise. Higher values of modularity reflect commu-
nities that have more connections within the community and
fewer connections with other communities. Notably, mod-
ularity is zero when structures are unidimensional, making
any algorithms that seek to maximize modularity less likely
to return one community (Golino et al., 2020b).

Walktrap

The Walktrap algorithm (Pons & Latapy, 2006) has been the
most commonly applied algorithm in the psychometric net-
work literature as the default of EGA (Golino & Epskamp,
2017; Golino et al., 2020b). The Walktrap algorithm begins
by computing a transition matrix where each element repre-
sents the probability (based on node strength) of one node
traversing to another. Random walks are then initiated for a
certain number of steps (e.g., 4), using the transition matrix
for probable destinations. Using Ward’s agglomerative clus-
tering approach (Ward, 1963), each node starts as its own
community and merges with adjacent communities (based
on squared distances between each community) in a way
that minimizes the sum of squared distances between other
communities. The partition in the hierarchy with the largest
modularity is then selected and corresponding community
memberships are used.

Infomap

Similar to the Walktrap algorithm, the Infomap algorithm
(Rosvall & Bergstrom, 2008) uses random walks. Different
from the Walktrap algorithm, Infomap is derived from infor-
mation theory with idea of “compressing” the conditional
information of a random walk on the network into Huff-
man codes (a binary naming system; Rosvall & Bergstrom,
2008). The major difference between these two algorithms
is that Infomap captures the conditional flow of information
across the network in a way that maximizes the information
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(e.g., bits) of the random walk process. The partition function
thus seeks to minimize the entropy of movement between
and within communities. The space of possible partitions
is explored using a deterministic greedy search algorithm,
which is refined using a simulated annealing approach.

Fast-greedy

The Fast-greedy algorithm (Clauset et al., 2004) seeks to
maximize modularity to identify partitions in the network.
Like the Walktrap algorithm, the Fast-greedy algorithm
begins with each node considered as its own community
and follows a hierarchical clustering algorithm. The algo-
rithm then proceeds by iteratively combining neighboring
communities in a greedy way: Each node is moved into a
community that maximizes the modularity function. These
aggregate communities are then merged until the modularity
function can no longer be increased.

Louvain

The Louvain algorithm (also referred to as multi-level; Blondel
et al., 2008) is similar to the Fast-greedy algorithm in that it
iteratively uses modularity to select its partitions. It differs
in that its motivation is to identify hierarchical structures in
large networks. Specifically, it iteratively exchanges nodes
between communities and evaluates the change in modular-
ity until it no longer improves. Then, the algorithm collapses
the communities into latent nodes and identifies edge weights
with other observed and latent nodes, which provides the
“multi-level” structure (Gates et al., 2016). In its use in
this study, the algorithm was not used to identify hierar-
chical community structures in the network. Therefore, it is
expected that this algorithm will closely align with the Fast-
greedy algorithm. The final solution depends on the node
order making the algorithm non-deterministic. In this study,
only one run was implemented for each sample in order to
evaluate its accuracy in its current form. Other strategies such
as bootstrapping (Christensen & Golino, 2021) or repeated
algorithm applications to the same network (De Beurs
et al., 2019; Lancichinetti & Fortunato, 2012) could be used
to arrive at a relatively stable organization of communities.

Leading Eigenvalue

The Leading Eigenvalue algorithm (Newman, 2006b) is
based on the spectral properties of the network using the
eigenvector of the first eigenvalue of the modularity matrix
to determine the number of community structures. Like the
Fast-greedy and Louvain algorithms, the Leading Eigenvalue
algorithm uses modularity to select the partition; however, the
first eigenvector of the modularity matrix is used, splitting
the network into two communities with the aim of improv-

ing modularity. This process iteratively unfolds until there is
no longer improvement in modularity.

Label Propagation

The Label Propagation algorithm (Raghavan et al., 2007)
begins by assigning each node a unique label. Each node
then adopts the same label that the majority of its neighbors
have with ties being broken randomly. This process continues
iteratively until each node has the same label as the majority
of its neighbors. The general notion of the algorithm is that a
consensus will develop among the nodes in the network. Like
the Louvain algorithm, this algorithm is not deterministic and
produces different results with each run. Only one run was
implemented in this study.

Spinglass

The Spinglass algorithm comes from statistical physics and
is based on the Potts model with the notion that “the prob-
lem of community detection can be mapped onto finding the
ground state of an infinite ranged Potts spin glass” (Reichardt
& Bornholdt, 2006, p. 1540). In essence, edges should con-
nect nodes that are in the same spin state (i.e., community),
while nodes in different states should be disconnected, which
results in a “lower energy state” or ground state of the sys-
tem. The model is simulated for some number of steps (e.g.,
25) and the spin states in the end define the communities.
This algorithm is not deterministic and only one run was
implemented in this study.

Edge Betweenness

The Edge Betweenness algorithm (Girvan & Newman, 2002)
was one of the first algorithms used to identify commu-
nities in networks. This algorithm finds edges that are
frequently “between” other nodes in the network known
as edge betweenness (based on the betweenness central-
ity; Freeman, 1977). Edge betweenness is calculated for the
entire network and the edge with the highest betweenness
value is removed. All edges that are affected by this removal
have their edge betweenness value recalculated. This pro-
cess repeats iteratively until no edges remain, making this
algorithm substantially slower than the other algorithms.
Modularity is used to determine the optimal cut-off.

Unidimensionality adjustment

We used Golino et al.’s (2020a) unidimensionality adjust-
ment for all algorithms to determine if it was necessary
to improve their performance on unidimensional structures.
We expected that this adjustment would be necessary for
algorithms that seek to maximize modularity to select their
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partitions. For computational efficiency and statistical pre-
cision, we adapted this approach to “expand” the empirical
correlation matrix to add four variables that are correlated
0.50 with each other (roughly equivalent to factor loadings
of.70) and 0.00 with all other variables (i.e., empirical vari-
ables). This approach avoids adding noise in the form of
spurious correlations between generated and empirical vari-
ables (i.e., they are exactly orthogonal) that would otherwise
be present if data itself were generated.

Statistical analyses

To evaluate the performance of the methods and algorithms,
accuracy and bias were computed using the percentage of
correct number of factors (PC), mean absolute error (MAE;
the average absolute deviation away from the correct number
of factors), and mean bias error (MBE; the average deviation
away from the correct number of factors). These are defined
below:

Y C
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mag = 219 =01
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where 0 is the estimated number of factors or communities,
6 is the population number of factors, and N is the number
of sample data matrices simulated.

A second approach was used to quantify the accuracy of
the item placement of the community detection algorithms,
specifically, whether the items were being identified in the
correct factor. The number of communities (representing fac-
tors), for example, could be recovered correctly; however,
some communities may have items that belong to a different
community than the simulated factor structure. Each item in
the simulated factor structure was assigned to only one factor
despite the existence of cross-loadings, which were always
smaller than their assigned factor’s loading.

A common metric to compare communities is the Hubert-
Arabie Adjusted Rand Index (Gates et al., 2016; Hoffman
et al., 2018; Hubert & Arabie, 1985; Steinley, Brusco, &
Hubert, 2016). The benefit of the Adjusted Rand Index (ARI)
is that it ignores the labeling of item placement and is invari-
ant to labeling permutations. The ARI therefore is a metric
of item placement precision. ARI is defined below:

N)@+d)—[@a+b)a+c)+ (c+d)(b+d)]

ARI = 3
) —la+b)ya+c)+ (c+d)(b+d)]
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where a is the count of items placed into the same population
and estimated factor and d is the count of items that are in
different communities of both the population and estimated
factors. Both b and ¢ count the wrong placement of nodes
between the population factor and estimated factor, respec-
tively. ARI was not computed for unidimensional structures.

To evaluate whether method—algorithm pairs were affected
by certain conditions, we computed analysis of variances
(ANOVAs) for each method—algorithm combination across
conditions. For the multidimensional conditions (2 and 4
number of factors), we used a fully factorial design to allow
for all possible interactions between conditions. For the uni-
dimensional conditions, we used the number of factors of 1
and 2. The purpose of this approach was to fully evaluate
the trade-off of the unidimensionality adjustment. Similarly,
for the unidimensional conditions, we used a fully factorial
design to evaluate possible differences based on correlation
between factors in bidimensional structures (two factor con-
ditions).

Partial eta squared (n%,) was used for effect size. We report
only large effect sizes (77[27 = 0.14) according to Cohen’s
(1992) guidelines. For full effect size results, see our Open
Science Framework (OSF). All analyses were performed in
R. The data, R code, and scripts can be found on the Open
Science Framework: https://osf.io/jfxad/.

Results
Accuracy and bias

The performance for each method-algorithm combination
was separated by whether there was an adjustment for
unidimensionality. For brevity, we focus first on reporting
the best-performing method—algorithm combinations within
each method for the accuracy and bias results of both contin-
uous and polytomous data. We then move on to discussing
the ANOVAs of the best method—algorithm combinations
in the multidimensional conditions. Afterward, we focus on
the unidimensional conditions. To aid interpretation of the
results for all possible method—algorithm and condition com-
binations, an interactive {Shiny} application (version 1.7.4;
Changetal., 2022) in R was created: https://alex-christensen.
shinyapps.io/community_detection_results/.

Overall

The five most accurate method—algorithm combinations
were: parallel analysis and PCA (89.8%), GLASSO and Lou-
vain with unidimensionality adjustment (88.7%), GLASSO
and Fast-greedy with unidimensionality adjustment (88.2%),
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GLASSO and Walktrap with unidimensionality adjustment
(87.3%), and parallel analysis and PAF (87.1%). For the least
absolute bias, the top five were: parallel analysis and PCA
(0.16), GLASSO and Louvain with unidimensionality adjust-
ment (0.16), correlation and Louvain without adjustment
(0.17), GLASSO and Fast-greedy with unidimensionality
adjustment, and parallel analysis and PAF (0.18). In terms of
direction of bias (under factoring = negative; over factoring
= positive), the best performers were GLASSO and Fast-
greedy with unidimensionality adjustment (0.05), GLASSO
and Louvain with unidimensionality adjustment (0.05), cor-
relation and Spinglass with no adjustment (0.05), GLASSO
and Walktrap with unidimensionality adjustment (0.06), and
correlation with Leading FEigenvalue without adjustment
(—0.06).

Continuous data

The best-performing combinations for percent correct were
GLASSO with unidimensional adjustment and the Louvain
(94.1%), Fast-greedy (93.7%), and Walktrap (91.7%) algo-
rithms followed by parallel analysis with PCA (91.6%) and
PAF (89.4%; Fig.1). Breaking down results for the other
three methods, correlation matrices with (81.9%) and with-
out adjustment (88.4%) for the Louvain algorithm as well as
the Spinglass with no adjustment (82.3%) were top perform-
ing. For AIC, the Walktrap (81.3%), Fast-greedy (81.1%),
and Louvain (81.1%) algorithms with unidimensional adjust-
ment were top performing. For BIC, the Louvain (68.3%),
Fast-greedy (68.3%), and Walktrap (67.6%) algorithms with
unidimensional adjustment were top performing.

The best-performing combinations for mean absolute
error followed a similar pattern as the percent correct results:
GLASSO with unidimensional adjustment for the Louvain
(0.07), Fast-greedy (0.08), and Walktrap (0.12) algorithms
were the best performing. These were followed closely by
parallel analysis with PCA (0.13) and PAF (0.14). For the
correlation matrices, the Spinglass algorithm with (0.24) and
without (0.20) unidimensional adjustment performed the best
along with the Louvain algorithm with adjustment (0.27).
For AIC, the Fast-greedy (0.26), Louvain (0.27), and Walk-
trap (0.28) with adjustment performed the best. For BIC,
the Spinglass algorithm with (0.75) and without (0.72) uni-
dimensional adjustment performed the best along with the
Louvain algorithm with adjustment (0.76).

The best combinations for mean bias error had a dif-
ferent pattern. The GLASSO with unidimensional adjust-
ment for the Walktrap (—0.01) and Louvain (—0.04) algo-
rithms were the best followed by the correlation matrix
with no adjustment for the Spinglass algorithm (0.04) and
GLASSO with unidimensional adjustment for the Fast-
greedy algorithm (—0.04). Continuing with the correla-
tion matrices, Leading Eigenvalue (—0.06) and Louvain

(—0.10) algorithms without adjustment were among the
best performing. For parallel analysis, PAF (—0.10) and
PCA(—0.13) had relatively low values. For AIC, Walk-
trap (0.06), Leading Eigenvalue (0.10), and Fast-greedy
(0.14) algorithms with unidimensional adjustment were the
best performing. For BIC, Infomap with and without (both =
0.43) unidimensional adjustment and Label Propagation with
unidimensional adjustment (0.58) were the best performing.

Polytomous data

The best-performing combinations for percent correct were
parallel analysis with PCA (87.9%) and PAF (84.6%;
Fig.2). These were closely followed by correlation with
no adjustment and Louvain algorithm (83.8%), GLASSO
with unidimensional adjustment and Louvain (83.5%), Walk-
trap (83.2%), and Fast-greedy (83.0%) algorithms. Other
top performing correlation algorithms were Louvain with
unidimensional adjustment (79.7%) and Spinglass with
(76.9%) and without (77.4%) unidimensional adjustment.
For AIC, the Fast-greedy (61.1%), Walktrap (61.0%), and
Louvain (60.3%) algorithms with unidimensional adjustment
were top performing. For BIC, the Infomap algorithm with
(46.1%) and without adjustment (46.0%) and the Fast-greedy
(44.5%) algorithm with unidimensional adjustment were top
performing.

The best-performing combinations for mean absolute
error for correlation matrices were the Louvain algorithm
with (0.29) and without (0.19) adjustment as well as the
Spinglass (0.26) algorithm with no adjustment. Parallel anal-
ysis performed as well as the best with both PCA (0.19) and
PAF (0.22) algorithms. For GLASSO, the Louvain (0.25),
Fast-greedy (0.26), and Walktrap (0.29) algorithms with uni-
dimensional adjustment were top performing. For AIC, the
Fast-greedy (0.52), Louvain (0.54), and Leading Eigenvalue
(0.55) algorithms with unidimensional adjustment were top
performing. For AIC, the Fast-greedy (0.52), Louvain (0.54),
and Leading Eigenvalue (0.55) algorithms with unidimen-
sional adjustment were top performing. For BIC, the Infomap
algorithm with and without adjustment (both = 1.44) and the
Spinglass (1.20) algorithm with unidimensional adjustment
were top performing.

The best-performing combinations for mean bias error
for correlation matrices were the Louvain (—0.07), Leading
Eigenvalue (—0.07), and Spinglass (0.07) algorithms with-
out adjustment. For parallel analysis, PAF (—0.12) performed
slightly better than PCA (—0.19). For GLASSO, the Louvain
(0.13), Fast-greedy (0.13), and Walktrap (0.14) algorithms
with unidimensional adjustment were top performing. For
AIC, the Leading Eigenvalue (0.27), Walktrap (0.32), and
Fast-greedy (0.36) algorithms with unidimensional adjust-
ment were top performing. For BIC, the Infomap algorithm
with (1.11) and without adjustment and the Spinglass (1.19)
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Continuous Results for Number of Factors

Unidimensionality Adjustment No Adjustment
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Fig. 1 Results for continuous data broken down by method, algorithm,
and whether there was a unidimensionality adjustment. Percent correct
represents whether the simulated number of factors was correctly iden-
tified, mean absolute error is the average absolute difference between
the estimated and simulated number of factors, and mean bias error
is the average difference between the estimated simulated number of
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Fast-greedy - Label Propagation. Louvain . Walktrap . PCA

factors. AIC = Non-regularized Gaussian graphical model with Akaike
information criterion selection, BIC = non-regularized Gaussian graph-
ical model with Bayesian information criterion selection, Correlation =
zero-order correlation matrix, and GLASSO = graphical least absolute
shrinkage and selection operator Gaussian graphical model
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Polytomous Results for Number of Factors

Unidimensionality Adjustment No Adjustment
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Fig.2 Results for polytomous data broken down by method, algorithm,
and whether there was a unidimensionality adjustment. Percent correct
represents whether the simulated number of factors was correctly iden-
tified, mean absolute error is the average absolute difference between
the estimated and simulated number of factors, and mean bias error
is the average difference between the estimated simulated number of

Fast-greedy - Label Propagation. Louvain . Walktrap . PCA

factors. AIC = Non-regularized Gaussian graphical model with Akaike
information criterion selection, BIC = non-regularized Gaussian graph-
ical model with Bayesian information criterion selection, Correlation =
zero-order correlation matrix, and GLASSO = graphical least absolute
shrinkage and selection operator Gaussian graphical model
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algorithm with unidimensional adjustment were top perform-
ing.

Summary of accuracy and bias

There were several clear patterns in the results. First, algo-
rithms tended to perform better when there was a unidi-
mensionality adjustment (but see some method—algorithm
combinations for correlation; Figs. 1 and 2). Across meth-
ods, the top performing algorithms were consistently the
Fast-greedy, Louvain, and Walktrap algorithms. Across
algorithms, the top performing methods were consistently
GLASSO and correlation. These top performing method—
algorithm combinations, especially the GLASSO method
with unidimensionality adjustment, performed comparable
or better than parallel analysis in continuous data but were
comparable or worse in polytomous data.

Multidimensional conditions

Shifting focus to the multidimensional conditions (two
and four factors), we focus more specifically on the best-
performing method—algorithm combinations from the overall
results. These were the correlation and GLASSO methods in
combination with the Fast-greedy, Louvain, and Walktrap
algorithms. Large effects for all method—algorithm combi-
nations can be found in our Supplementary Information (SI
2).

Percent correct effects

Loading size was the only main effect that affected the
GLASSO method and algorithm pairs (Fast-greedy, Louvain,
and Walktrap). Correlation with Fast-greedy and Louvain
was also affected. For these method—algorithm combinations,
percent correct increased as loading size increased.

The rest of the main effects pertain only to the correla-
tion method. There were separate main effects of correlation
between factors and number of variables per factor for the
Fast-greedy, Louvain, and Walktrap algorithms. For correla-
tion between factors, percent correct decreased as correlation
between factors increased; for number of variables per fac-
tor, percent correct increased as the number of variables per
factor increased. Lastly, there was a main effect of number
of factors for Fast-greedy and Walktrap such that percent
correct decreased as the number of factor increased.

Adjusted Rand Index effects
Overall, GLASSO and Louvain (0.96), Fast-greedy (0.95),
Spinglass (0.94), and Walktrap (0.94) with no adjustment had

the highest ARIs in the multidimensional conditions (Fig. 3).
This same rank-order was found when broken down by data
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type with minimal differences between continuous and poly-
tomous data. Based on these results, we continued with our
focus on the correlation and GLASSO methods with the Fast-
greedy, Louvain, and Walktrap algorithms. All large effects
for all other method—algorithm combinations are reported in
the Supplemental Information (SI 3).

There were several interactions. For all three algorithms
with GLASSO, there was an interaction between loading
size and correlation between factors such that ARI increased
as loading size increased and correlation between factors
decreased. Loading size also interacted with number of vari-
ables per factor for GLASSO with Louvain and Walktrap
such that ARI increased as loading size and number of
variables per factor increased. A third interaction involving
loading size and sample size for GLASSO and Louvain was
found where ARI increased as loading size and sample size
increased.

For correlation and Louvain, there were interactions
between number of variables per factor and correlation
between factors as well as unidimensional adjustment. In the
former, ARI increased as the number of variables per fac-
tor increased and correlation between factors decreased. In
the latter, ARI increased as the number of variables per fac-
tor increased and there was no adjustment. Correlation and
Fast-greedy similarly had an interaction between number of
variables per factor and unidimensional adjustment such that
ARl increased as the number of variables per factor increased
and there was no adjustment.

In terms of main effects, all algorithms for both corre-
lation and GLASSO were affected by loading size, corre-
lation between factors, and number of variables per factor
(Fig. 4). The effects were the same for all combinations: ARI
increased as loading size or number of variables per factor
increased and ARI decreased as correlation between fac-
tors increased. The correlation method had additional effects
for number of factors and unidimensional adjustment. For
number of factors, ARI decreased as the number of factors
increased for the Fast-greedy and Walktrap algorithms. For
the unidimensional adjustment, ARI was greater when there
was no adjustment for the Fast-greedy and Louvain algo-
rithms.

Unidimensional conditions

Shifting to the unidimensional conditions, all algorithms for
the correlation and GLASSO methods were considered. We
did not consider AIC or BIC because of their poor overall per-
formance. To determine the effects of the unidimensionality
adjustment, we focused on the unidimensional and bidimen-
sional (two factor) conditions. The focus on these conditions
were to better evaluate the trade-off of the unidimensionality
adjustment. Results were collapsed across data type because
there were no substantial differences in performance.
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Adjusted Rand Index by Number of Factors
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Fig.3 Adjusted Rand Index across all two and four factor conditions broken down by method, algorithm, and whether there was a unidimensionality
adjustment. Correlation = zero-order correlation matrix and GLASSO = graphical least absolute shrinkage and selection operator Gaussian graphical

model

In these conditions, the best-performing method—algorithm
combinations were parallel analysis and PCA (94.9%), cor-
relation and Leading Eigenvalue with no unidimensionality
adjustment (94.3%), and correlation and Louvain with no
unidimensionality adjustment (93.1%). For combinations
with the unidimensionality adjustment, the best performers
were GLASSO and the Walktrap (90.9%), Leading Eigen-
value (90.8%), and Louvain (88.6%) algorithms.

For the ANOVA, a general pattern key to unidimension-
ality adjustment investigation was identified: There was an
interaction effect between the unidimensional adjustment
and number of factors for every method—algorithm pair
(including AIC and BIC) involving a modularity-related
algorithm (specifically, Fast-greedy, Leading Eigenvalue,
Louvain, and Walktrap). The effect, for all combinations, was
that with the unidimensionality adjustment percent correct was
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Unidimensionality Adjustment

No Adjustment

Adjusted Rand Index by Multidimensional Conditions
Correlation and GLASSO with Fast-greedy, Louvain, and Walktrap
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Fig.4 Adjusted Rand Index for each simulated condition broken down
by correlation (zero-order correlation matrix) and GLASSO (graphi-
cal least absolute shrinkage and selection operator Gaussian graphical
model) method, Fast-greedy, Louvain, and Walktrap algorithms, and

greater for unidimensional structures than with no adjustment
but percent correct was lower for bidimensional structures
than with no adjustment.

For the rest of the effects, we focused on the interaction
effects of the correlation and GLASSO methods with the top
performing algorithms: Leading Eigenvalue, Louvain, and
Walktrap. The large effects for all other method—algorithm
combinations are reported in the Supplementary Information
(ST 4). Other than the unidimensional adjustment and num-
ber of factors interaction, there was a crossover interaction
between unidimensional adjustment and number of variables
per factor for the Leading Eigenvalue and Louvain algorithms
for both methods. When there were more variables per factor,
percent correct was higher for the adjustment than no adjustment.
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whether there was a unidimensionality adjustment. Data = categories
in data, Factors = number of simulated factors, Variables = number of
variables per factor, Correlations = correlations between factors, load-
ings = factor loadings, sample size = number of observations

When there were fewer variables per factor, percent correct
was higher without the adjustment than with it. These same
method-algorithm combinations also had a crossover inter-
action between the number of factors and number of variables
per factor such that percent correct was higher with one fac-
tor and fewer variables or when there were two factors and
more variables.

Alternative Unidimensionality Adjustment

The results of the unidimensional and bidimensional condi-
tions demonstrated a strong trade-off: better performance in
unidimensional conditions with an adjustment and better per-
formance in bidimensional conditions without an adjustment.
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When considering options to avoid, or at least minimize,
the trade-off of performance in unidimensional and bidimen-
sional conditions with the unidimensionality adjustment, one
approach might be to use an algorithm that performs well in
both conditions without any adjustment.

There were two method-algorithms that were compara-
ble to parallel analysis and PCA that did not involve any
adjustment: correlation with Leading Eigenvalue and Louvain

(Fig. 5). A key criterion for using one of these algorithms as
a unidimensionality adjustment is that they are precise—that
is, they recover one community when there is one factor sim-
ulated and they recover two communities when there are two
factors simulated. In both the unidimensional and bidimen-
sional conditions, the Leading Eigenvalue algorithm (91.8%
and 96.8%, respectively) had a slight edge on the Louvain
algorithm (90.7% and 95.5%, respectively).

Percent Correct for Number of Factors
Unidimensional and Bidimensional Conditions
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order correlation matrix, GLASSO = graphical least absolute shrinkage
and selection operator Gaussian graphical model, and Factors = number
of simulated factors

@ Springer



Behavior Research Methods

Based on this edge, we decided to investigate whether
using the Leading Eigenvalue algorithm on the correlation
matrix could mitigate some of the effects of the original
unidimensionality adjustment. Specifically, whether using
the Leading Eigenvalue on the correlation matrix to detect
unidimensional structures could mitigate the performance
trade-off in the two factor condition relative to the current
adjustment. We used the following criterion to adjust the per-
formance of the results with no adjustment: if correlation and
Leading Eigenvalue recovered one community, then return
one community; otherwise, use the unadjusted GLASSO-
algorithm combination. To evaluate the performance of this
criterion, we used the top performing GLASSO-algorithm
combinations—Fast-greedy, Louvain, and Walktrap. We
report the percent correct relative to the unidimensional
adjustment results.

The GLASSO-algorithm performance overall improved
by around 1% in accuracy: Louvain (89.5%), Fast-greedy
(89.1%), and Walktrap (87.7%). Although this improvement
seems minimal, a different story emerges when accuracy is
broken down by factors. On the one hand, all algorithms’
accuracies dropped by about 3% in the unidimensional con-
ditions: Louvain (95.3% — 92.6%), Fast-greedy (95.1%
— 92.6%), and Walktrap (96.7% — 92.8%). On the other
hand, all algorithms’ accuracies increased by about 5% in the
bidimensional conditions: Louvain (81.8% — 87.1%), Fast-
greedy (81.3% — 86.9%), and Walktrap (84.9% — 90.0%).
This trade-off appears to strike a better balance between
favoring unidimensional over bidimensional solutions rela-
tive to the previous approach. Although more investigations
are needed, the Leading Eigenvalue adjustment appears to
be an improvement on present standards for detecting unidi-
mensionality in psychometric networks.

Applied example

To demonstrate how these method—algorithm pairs might
perform on real-world data, we used the Big Five Inventory
dataset from the {psych} package (version 2.3.0, Revelle,
2017) in R. This dataset is comprised of 25 items with 5
items per theoretical factor (5 total factors) and follows simi-
lar characteristics to our polytomous data that were simulated
in this study: variables are on a six-point Likert scale, range
in skew from —1.24t00.84 (M = 0.27 and SD = 0.68), and
large to very large sample size (N = 2436 after removing
cases with missing data). We applied all method—algorithm
combinations evaluated in this simulation and provided ARI
for the community detection method using the theoretical
item placements.

The results generally paralleled our simulation findings:
Louvain, Fast-greedy, and Walktrap all identified the theoret-
ical factors and item placements within at least one method—
algorithm combination (Table 2). Additionally, Spinglass all
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Table 2 BFI Empirical Example

Algorithm Method Communities/Factors ARI
Edge Betweenness ~ AIC 9 0.13
BIC 6 0.44
Correlation 10 0.09
GLASSO 7 0.47
Fast-greedy AlIC 5 0.80
BIC 5 1.00
Correlation 4 0.75
GLASSO 5 0.89
Infomap AIC 1 0.00
BIC 4 0.75
Correlation 1 0.00
GLASSO 4 0.75
Label Propagation  AIC 1 0.00
BIC 6 0.73
Correlation 1 0.00
GLASSO 6 0.73
Leading Figenvalue AIC 5 0.69
BIC 5 0.89
Correlation 3 0.33
GLASSO 5 0.64
Louvain AIC 5 0.80
BIC 5 1.00
Correlation 4 0.75
GLASSO 5 1.00
Spinglass AIC 5 0.80
BIC 5 0.81
Correlation 4 0.75
GLASSO 5 1.00
Walktrap AIC 4 0.48
BIC 5 1.00
Correlation 4 0.50
GLASSO 5 1.00
PAF Parallel Analysis 6 —
PCA Parallel Analysis 5 —

Note. Bolded values indicate results that match the theoretical number
of factors and item placement

identified the theoretical factors and item placements with
the GLASSO method. In terms of methods, both GLASSO
and BIC had five algorithms identify the theoretical number
of factors and three algorithms identify the theoretical item
placements. AIC had four algorithms identify the theoretical
number of factors but none identified the proper placement.
Correlation did not identify the theoretical number of factors
or item placements with any algorithm used. Parallel anal-
ysis with PCA identified the theoretical number of factors
whereas PAF identified six factors.
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To showcase the detection of unidimensional structures,
we applied the method proposed by Golino and colleagues
(2020a), the correlation with Leading Eigenvalue combina-
tion identified in this study, and parallel analysis with PCA to
each of the theoretical BFI factors. The expectation was that
each of these factors should be unidimensional. Indeed, for
all methods, we found that each factor was unidimensional.
With no adjustment, GLASSO with the Fast-greedy, Lou-
vain, and Walktrap algorithms produced two communities
for each factor for all algorithms.

Discussion

This study examined the performance (accuracy and bias) of
different network methods and several community detection
algorithms for recovering the correct number of factors in
data that parallel many commonly used questionnaires (e.g.,
personality). The aims of the study evaluated each component
of the recently popularized EGA (Golino & Epskamp, 2017
Golino, Shi, et al., 2020b). The standard sparsity induction
approach, GLASSO, was compared against the zero-order
correlation matrix and two variants of non-regularized GGMs
(Williams & Rast, 2018; Williams et al., 2019). The commu-
nity detection component, Walktrap, was evaluated against
several other community detection algorithms that are com-
monly applied or open available in the {igraph} package.
Third, their proposed approach to handled unidimensional-
ity was tested more extensively. The overarching aim of the
simulation was to identify what combinations of methods
and algorithms would optimally perform in a wide variety
of conditions common in empirical data found in psychol-
ogy. As a benchmark, parallel analysis was used given its
prevalence in the factor analytic literature.

Overall, we found that some sparsity induction method—
algorithm combinations were comparable to the algorithms
applied to the zero-order correlation matrix and parallel anal-
ysis algorithms, and that this performance was dependent on
the sparsity induction method and community detection algo-
rithms being used. Specifically, we found that the GLASSO
sparsity induction method paired with the Louvain, Fast-
greedy, and Walktrap algorithms all performed as well as
parallel analysis or better than correlation approaches. When
it came to unidimensional structures, some algorithms, par-
ticularly those that seek to maximize modularity, performed
better when there was an adjustment (i.e., adding an uncorre-
lated latent factor to the data; Golino, Shi, et al., 2020b). We
found, however, that this adjustment comes with an impor-
tant trade-off: accuracy for simulated two factor structures
substantially decreases.

Focusing on the sparsity induction methods, this study
was the first, to our knowledge, to evaluate how differ-
ent partial correlation sparsity induction methods performed

when recovering the number of simulated factors in fac-
tor models. Previous work had compared the GLASSO to
a correlation-based method, the TMFG, with the GLASSO
showing better performance in nearly all conditions (Golino,
Shi, et al., 2020b). Other work, using the non-regularized
partial correlation sparsity induction methods used in this
study, evaluated the performance of these methods to recover
the edges present in different population network structures,
finding that the non-regularized approaches performed bet-
ter on measures of specificity (avoidance of false positives)
than the GLASSO method (Williams & Rast, 2018; Williams
et al., 2019). In contrast to these studies, we found that
although these methods may perform better when recovering
the edges in dense simulated networks, they did not perform
better with respect to recovering the correct number of simu-
lated factors in unidimensional and multidimensional factor
structures.

As for the community detection algorithms, there has been
extensive evaluations of these algorithms across different
literature. The closest comparison to our simulation used
brain network correlation structures (Gates et al., 2016). In
Gates and colleagues’ (Gates et al., 2016) study, they found
that for correlation matrices, the Walktrap algorithm outper-
formed the other algorithms on a measures of item placement.
Notably, the Louvain algorithm performed the best when
Euclidean Distance was used as a similarity measure. Our
results generally parallel their study, finding the Walktrap
and Louvain algorithms among the best-performing algo-
rithms. Our study more extensively demonstrates that these
algorithms are effective on relatively small networks despite
their original purpose for larger networks (>1,000 nodes;
Fortunato, 2010).

It is important to emphasize that our study is the first, to
our knowledge, to investigate these algorithms with respect
to different methods (sparsity induction vs. zero-order cor-
relation matrix only) but also data that were not continuous.
The choice of using polytomous data with five categories
was based on the ubiquitous use of 5-point Likert scales
in psychological research (e.g., personality). Previous work
examined how the GLASSO paired with the Walktrap algo-
rithm performed in dichotomous data, finding that there was
about a 6% difference in accuracy (better accuracy for contin-
uous data; Golino, Shi, et al., 2020b). Our results, specifically
with the GLASSO, demonstrate that there is a notable drop-
off in accuracy between continuous and polytomous data
(around 10% for most algorithms). This larger drop-off in
accuracy could be do differences in the simulated conditions
between the two studies (but see Isvoranu & Epskamp, 2021).
As with any simulation, the results are dependent on the char-
acteristics of the simulated data.

The findings of this simulation warrant some considera-
tion for future applications of EGA, which has been one of the
most common approaches for community detection in net-
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work psychometrics. Our results show community detection
algorithms, specifically those that seek to maximize modular-
ity, are ineffective for identifying unidimensional structures
when the GLASSO algorithm is applied. Although several
algorithms are more effective when they are applied to corre-
lation matrices, they tended to suffer when there were one or
two factors. This poses a specific problem that community
detection algorithms may not be optimal for handling uni-
dimensional structures when paired with sparsity induction
methods.

We evaluated one approach, proposed by Golino, Shi,
etal. (2020b), that “expands” the correlation matrix with four
highly correlated variables that are orthogonal to the empiri-
cal data. This approach appears to work fairly well (recovery
of unidimensional structures substantially improves), how-
ever, there was a significant trade-off: recovery of two factor
structures was substantially hindered. In light of this trade-
off, we examined an alternative approach that uses the
Leading Eigenvalue algorithm on the correlation matrix as
a unidimensionality “check” before proceeding with a spar-
sity induction method and a subsequent community detection
algorithm. We found that this alternative approach achieved a
better balance between one and two factor recovery, making
it an appealing alternative. Caution should be given to the
results of this single study, however. Future studies should
continue to evaluate these approaches to determine whether
one is better than the other. A more extensive simulation
that evaluates unidimensional and bidimensional structures
could provide more insight into which algorithms work best
and under what conditions.

When considering the community detection component,
we found evidence that the Louvain and Fast-greedy algo-
rithm are worthwhile considerations for adoption into the
EGA framework. Because the two algorithms are relatively
similar and demonstrated similar performance, preference
should be given to the Louvain algorithm because it also
provides a hierarchical or “multi-level” structuring of com-
munities. Such hierarchical structuring is important for
determining different levels of taxonomies that often exist in
psychological assessment instruments (e.g., personality, psy-
chopathology; Castro, Ferreira, & Ferreira, 2020; Jiménez
et al., 2022; Kotov et al., 2017). Moreover, an additional
algorithm also provides another method to compare results
from EGA such that the best fitting or most theoretically con-
sistent model can be chosen based on the results (e.g., Golino
et al., 2020a).

The decision on whether to use the Walktrap, Louvain,
or any other community detection algorithms depends on the
expected features of the data. Brusco and colleagues’ (2022a)
simulations revealed that when the number of nodes per
community is equal, similar to our simulation, modularity-
based approaches (Fast-greedy, Louvain, and a modularity
maximization approach) perform slightly better than the
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Walktrap algorithm; however, when the number of nodes per
community is unequal, the Walktrap algorithm performed
better than the modularity-based approaches. Although many
scales used in psychology tend to have an equal number
of variables per theoretical dimension, it is common, espe-
cially in psychopathological disorders, to have a different
number of variables per dimension. Modularity-based meth-
ods are known to suffer from a so-called “resolution limit”
where smaller communities, based on the size and density
of the overall network, are not detected (e.g., Fortunato &
Barthelemy, 2007). Identifying where different community
detection algorithms breakdown will be critical for their con-
tinued application in psychometric research.

Another important consideration for modularity algo-
rithms (e.g., Fast-greedy, Louvain) is that they are heuristic
approaches for finding the community structure that maxi-
mizes modularity. For larger networks (nodes > 1000), these
heuristics are computationally efficient relative to approaches
that can maximize modularity; for psychometric networks,
which tend to be much smaller (between 10-60 nodes), inte-
ger programming approaches can quickly find the maximum
modularity (Brusco et al., 2022a) and therefore achieve what
Louvain and Fast-greedy algorithm seek to maximize (but
may not always achieve). Brusco and colleagues (2022a)
demonstrate that Louvain and Fast-greedy algorithms often
perform comparability to the maximization method when
recovering a simulated community structure in networks
similar to those generated in this study. In the future, their
integer programming approach should be compared to these
algorithms as well as the Walktrap and newer variants (e.g.,
K-means; Brusco et al., 2021; Brusco et al., 2022b).

In sum, our simulation demonstrates that there are parts
of the EGA algorithm that could be improved. First, the
GLASSO sparsity induction method appears to have an
advantage over non-regularized approaches when it comes
to accurate latent factor recovery. Second, the Louvain
and Walktrap algorithms appear to work well with the
GLASSO method and are competitive with parallel anal-
ysis approaches. Third, the unidimensionality adjustment
proposed by Golino, Shi, et al. (2020b) demonstrated a sub-
stantial trade-off between unidimensional and bidimensional
structures, favoring unidimensional over bidimensional. We
identified a potential alternative that uses the Leading Eigen-
value algorithm on the zero-order correlation matrix that may
be a more balanced comprise between unidimensional and
bidimensional detection. Future work should continue to val-
idate and explore alternatives to the components of the EGA
algorithm to combine into the most robust network psycho-
metrics dimension reduction procedure possible.
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