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Abstract 

This study proposes a procedure for substantive dimensionality estimation in the presence 

of wording effects, the inconsistent response to regular and reversed self-report items. The 

procedure developed consists of subtracting an approximate estimate of the wording effects 

variance from the sample correlation matrix and then estimating the substantive dimensionality 

on the residual correlation matrix. This is achieved by estimating a random intercept factor with 

unit loadings for all the regular and unrecoded reversed items. The accuracy of the procedure 

was evaluated through a broad simulation study that manipulated six relevant variables and 

employed the exploratory graph analysis (EGA) and parallel analysis (PA) retention methods. 

The results indicated that combining the proposed procedure with EGA or PA achieved high 

accuracy in estimating the substantive latent dimensionality, but that EGA was superior. 

Additionally, the present findings shed light on the complex ways that wording effects impact 

the dimensionality estimates when the response bias in the data is ignored. A tutorial on 

substantive dimensionality estimation with the R package EGAnet is offered, as well as practical 

guidelines for applied researchers.  

Keywords: number of factors, dimensionality, wording effects, method factor, response 

bias, exploratory graph analysis, parallel analysis 
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Dimensionality Assessment in the Presence of Wording Effects: A Network Psychometric 

and Factorial Approach 

Self-reports are one of the most prevalent means of collecting information in the behavioral 

and health sciences (Chan, 2010). The use of self-reports is advantageous because it enables the 

collection of large amounts of quantitative data at a low cost, which can then be used to develop 

generalizable findings that are highly useful for society (Demetriou et al., 2015). Despite their 

widespread use, however, the validity of self-reported data is threatened by response biases 

which can result from many causes associated with the rater, item characteristics, item context, 

and measurement context (Podsakoff et al., 2003). Of these response biases, those related to the 

semantic polarity of the items, usually referred to as “wording effects”, are particularly prevalent 

and adverse (Swain et al., 2008; Weijters et al., 2013). Among their various negative impacts on 

validity, they can deteriorate model fit (Schmalbach et al., 2020), increase the dimensionality of 

the observed scores through the emergence of artifactual “method” factors (DiStefano & Motl, 

2006), distort the factor loading structures (Garrido et al., 2022), alter structural relationships 

(Nieto et al., 2021), and reduce scale reliabilities (Vigil-Colet et al., 2020).  

Wording effects are logically inconsistent answers to regular and reversed items of the 

same dimension (Kam, 2018). An item is regular-keyed if its semantic polarity is in the direction 

of the construct being measured (e.g., the item “Am afraid of many things” for Neuroticism). 

Conversely, an item is reverse-keyed if its semantic polarity is in the opposite direction of the 

construct (e.g., the item “Remain calm under pressure” for Neuroticism). Respondents that agree 

(or disagree) with both regular and reversed-keyed items of the same dimension are thought to be 

answering in a logically inconsistent manner (Nieto et al., 2021). Research suggests that these 

wording effects result from response biases, such as carelessness, acquiescence, and 
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comprehension difficulty (Baumgartner et al., 2018; Swain et al., 2008; Weijters et al., 2013). 

Carelessness occurs when respondents pay insufficient attention to the items’ content, producing 

random or nonrandom response patterns that are unrelated to the measures being administered. 

The acquiescence response bias is the tendency to express agreement with statements regardless 

of their content. Comprehension difficulty arises when the person’s response does not match their 

true beliefs because of problems in properly understanding the items’ content or in selecting the 

appropriate response options.    

Determining the number of factors to retain is one of the most important decisions in factor 

analytical research (Hayton et al., 2004; Henson et al., 2006). Specifying less –underfactoring– 

or more –overfactoring– dimensions than those present in the population can have detrimental 

effects on the quality of the factor solutions, including substantial error in the factor loading and 

factor score estimates, factor splitting, inadmissible solutions, and the emergence of 

uninterpretable factors (Auerswald & Moshagen, 2019). The inherent difficulties of 

dimensionality assessment are further exacerbated by the response biases related to wording 

effects, which tend to increase the latent dimensionality of observed scores (García-Batista et al., 

2021; Kam, 2018; Schmalbach et al., 2020; Yang et al., 2018; Zhang & Savalei, 2016). This, in 

turn, can lead to long-standing controversies regarding the substantive or artifactual nature of 

dimensions underlying mixed-worded scales (Gnambs et al., 2018).  

At present, dimensionality assessment methods are limited because they only inform of the 

total dimensionality underlying the observed data, offering no guidance regarding whether one 

or more of the suggested factors are due to wording effects. This can make researchers over-rely 

on theory and model comparisons that may not result in the selection of the optimal models, 

particularly when multiple substantial factors and multiple wording factors underlie the data 
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(Kam, 2018). This situation is especially adverse in more exploratory contexts where theory 

regarding the latent structure is more tenuous. Furthermore, for dimensionality methods that also 

provide an estimate of the latent structure (i.e., item groupings), such as exploratory graph 

analysis (EGA; Golino & Epskamp, 2017), wording effects can lead to non-interpretable 

solutions (Juárez-García et al., 2021).  

In this paper we propose a procedure for substantive dimensionality estimation to address 

the problems related to dimensionality assessment in the presence of wording effects. The 

accuracy of the proposed procedure is tested via a broad Monte Carlo simulation study and an 

empirical study with Big Five personality data. Additionally, we conduct the first in-depth 

systematic evaluation of the performance of traditional dimensionality methods with simulated 

data contaminated by wording effects. To contextualize the study, the rest of the Introduction is 

organized as follows: first, we present a brief overview of two highly recommended 

dimensionality assessment methods, which are the focus of this study. Second, we provide a 

detailed description and rationale for the proposed procedure. Third, we summarize the aims and 

hypotheses of the study.  

Dimensionality Assessment Methods 

Many methods have been proposed to assess the latent dimensionality of psychological 

data (for a review, see Auerswald & Moshagen, 2019, and Goretzko et al., 2021). Of these, 

parallel analysis (PA; Horn, 1965) and EGA (Golino & Epskamp, 2017) have shown excellent 

performance across numerous studies (e.g., Auerswald & Moshagen, 2019; Cosemans et al., 

2021; Garrido et al., 2013, 2016; Golino et al., 2020; Golino & Demetriou, 2017; Xia, 2021). As 

a result, PA and EGA are currently some of the most recommended dimensionality assessment 

methods (Cosemans et al., 2021; Ferrando et al., 2022; Goretzko et al., 2021).  
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Parallel Analysis 

Horn (1965) proposed PA as a sample alternative to the eigenvalue-greater-than-one rule, 

which posits that factors with eigenvalues > 1 should be retained (Kaiser, 1960). Horn argued 

that the rank of a sample correlation matrix should be estimated by subtracting out the 

component in the eigenvalues due to sampling error and capitalization on chance (Horn, 1965). 

To accomplish this, Horn suggested generating random data from a null model of zero 

correlations and with the same number of variables and sample size as the data under assessment. 

According to the PA procedure, factors should then be retained if their eigenvalues are greater 

than the eigenvalues of the corresponding factors from this generated data. It follows, therefore, 

that at the population level PA and the eigenvalue-greater-than-one rule are equivalent, as the 

eigenvalues from a null correlation matrix are all equal to one.  

Several variations of the PA method have been proposed (for a review, see Lim & Jahng, 

2019). These variants suggest using different extraction methods, generating the random data 

from different models, or employing different criteria to aggregate the random eigenvalues. 

However, there is converging evidence that Horn’s original formulation of computing the 

eigenvalues from the full correlation matrix (i.e., principal component analysis [PCA] 

eigenvalues) and generating the data from a null model might provide the best performing 

formulation (Garrido et al., 2013; Lim & Jahng, 2019; Xia, 2021). In terms of the aggregating 

criteria for the random eigenvalues, the mean tends to perform better for correlated structures, 

while the 95th percentile is superior for orthogonal structures or data with population error 

(Garrido et al., 2013; Lim & Jahng, 2019; Xia, 2021). Additionally, it is important that the 

random data preserves the distributional properties of the assessed data to ensure the 

effectiveness of all PA variants (Lubbe, 2019). This can be achieved through various procedures, 
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such as random column permutations of the original data or discretization of multivariate normal 

data using the item thresholds (Garrido et al., 2013; Lubbe, 2019).  

Exploratory Graph Analysis 

EGA (Golino & Epskamp, 2017) is a network psychometrics approach to identify 

communities comparable to factors in a network. Psychometric networks represent variables as 

nodes (circles) and the relationships between nodes as edges (lines). The EGA procedure applies 

a network estimation method followed by a community detection algorithm for weighted 

networks (Golino et al., 2020). In the network psychometrics literature, the most common 

method to estimate a network is to use the graphical least absolute shrinkage and selection 

operator (GLASSO; Friedman et al., 2014). The GLASSO seeks to maximize the penalized ℓ!-

norm log-likelihood by shrinking parameter estimates of the inverse covariance matrix and 

setting some to zero. After estimation, the inverse covariance matrix is converted to a partial 

correlation matrix. The GLASSO has a rho parameter that is selected using the extended 

Bayesian information criterion (EBIC; Epskamp & Fried, 2018). 

 After the network is estimated, EGA applies a community detection algorithm to identify 

communities or sets of nodes that are more connected with themselves than other nodes in the 

network. The original algorithm applied in the EGA approach is the Walktrap algorithm, which 

implements random walks from node to node in the network and identifies communities based 

on how walks tend to stick within sets of nodes (Pons & Latapy, 2005). More recently, EGA has 

been evaluated using other community detection algorithms, finding that the Louvain algorithm 

(Blondel et al., 2008) had the highest accuracy for recovering the population number of factors in 

data generated from factor models (Christensen et al., 2021). The Louvain algorithm identifies 

communities hierarchically, starting with smaller clusters or sets of nodes and merging them into 
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larger and larger clusters by optimizing a criterion called modularity (the extent to which nodes 

are more connected to nodes within their community than to nodes in other communities; Gates 

et al., 2016). This feature allows the Louvain algorithm to output community solutions at 

different levels (i.e., smaller clusters and larger clusters) analogous to lower-order and higher-

order structures often seen in hierarchical factor models. The Walktrap algorithm also identifies 

communities hierarchically using Ward’s method and decides on the best composition of nodes 

into communities by choosing a solution that maximizes modularity (Pons & Latapy, 2005). 

However, the final solution of the Walktrap algorithm is solely the partition of nodes into 

communities in which modularity is the highest. On the other side, the Louvain algorithm uses a 

very different approach, with two phases: one where modularity is optimized by allowing only 

local changes of communities and one where these estimated communities are aggregated to 

build a new network of communities. The process is repeated iteratively until no increase in 

modularity is possible (Blondel et al., 2008). 

A Proposal for Substantive Dimensionality Estimation  

In this section we propose a procedure to estimate the number of substantive factors 

underlying mixed-worded scales. The procedure consists of first subtracting an approximate 

estimate of the wording effects variance from the sample correlation matrix and then computing 

the dimensionality estimates on the obtained residual correlation matrix. For this, we leaned on 

the random intercept item factor analysis (RIIFA) model developed by Maydeu-Olivares and 

Coffman (2006), which has shown excellent performance in accounting for the wording effects’ 

variance across simulation (e.g., de la Fuente & Abad, 2020; Garrido et al., 2022; Savalei & 

Falk, 2014; Nieto et al., 2021) and empirical (e.g., Aichholzer, 2014; Arias et al., 2020; 

Schmalbach et al., 2020; Weydmann et al., 2020) studies. Notably, the RIIFA model has been 
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produced excellent levels of fit for data contaminated with different types of wording effects 

(Nieto et al., 2021), as well as a good recovery of the substantive factor loadings, even with 

unequal amounts of wording effects across items (Savalei & Falk, 2014). We will first introduce 

the RIIFA model, and then we will describe why it is well suited to address the problem of 

dimensionality assessment in the presence of wording effects.  

For an 𝑚-dimensional common factor model, the response of participant 𝑗 to item 𝑖, 𝑦"#, 

can be written as 

 𝑦"# = 𝜇" + 𝝀"$𝜼# + 𝑒"#, (1) 

where µ" is the intercept for item 𝑖, 𝝀" is the vector of factor loadings for item 𝑖, 𝜼# is a vector of 

factor scores for participant 𝑗, and 𝑒"# is the error term for participant 𝑗 on item 𝑖. As can be seen 

in Equation 1, the intercept µ" does not change across participants.  

Employing the typical assumption of the common factor model that the error terms are 

uncorrelated with the common factors, the model-implied covariance matrix, Σ%, can be 

expressed as 

 Σ% = 𝚲𝚿𝚲′ + 𝚯, (2) 

where 𝚲 is a 𝑝 × 𝑚 matrix of factor loadings, 𝚿 is the 𝑚 ×𝑚 factor covariance matrix, 𝚯 is the 

𝑝 × 𝑝 error covariance matrix, and 𝑝 is the number of items. 

In the common factor model with a random intercept factor, the assumption of intercepts 

common to all respondents is relaxed by allowing the intercepts to vary from respondent to 

respondent (Maydeu-Olivares & Coffman, 2006). Thus, In the RIIFA model the intercept 𝛾"# is 

partitioned into a fixed part, 𝜇", that is common across respondents but varies across items, and a 

random part, 𝜁#, that varies across respondents but is common to all items. The term 𝜁# allows 
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the RIIFA model to account for participants’ idiosyncratic use of the response scale that is 

common across items. The equation for 𝑦"# in the RIIFA model can thus be written as 

 𝑦"# = 𝛾"# + 𝝀"$𝜼# + 𝑒"# ,										𝛾"# = 𝜇" + 𝜁#.	 (3) 

If, in addition to the typical assumptions of the common factor model, we assume that the 

mean of 𝜁 is zero, that 𝜁 is uncorrelated with 𝑒, and that 𝜁 is uncorrelated with the common 

factors, then Σ% can be expressed as 

 Σ% = 𝟏𝜑𝟏$ + 𝚲𝚿𝚲′ + 𝚯, (4) 

where 𝟏 is a 𝑝 × 1 vector of ones and 𝜑 is the variance of the random component of the 

intercept, 𝜁.  

As can be seen in Equation 4, the RIIFA model does not estimate the intercepts for each 

respondent, instead, it estimates their variance, 𝜑. The term 𝟏𝜑𝟏$ is estimated by simply adding 

an additional factor to the 𝑚-dimensional factor model, where the unstandardized factor loadings 

of all the items are fixed to 1 (assuming that the reversed items are unrecoded), and 𝜑 is freely 

estimated. This additional factor is specified to be orthogonal to the 𝑚 common factors. 

For the current proposal, we are interested only in the additional factor that corresponds to 

the random intercept. Considering that with unrecoded reversed items the loadings of the regular 

and reversed items on the substantive factors would have opposite signs, having all the loadings 

be equal on the random intercept factor suggest an artifactual relationship (of opposite direction 

than suggested by substantive theory) between the two groups of items. It is this property of the 

random intercept factor, in addition to its orthogonality to the substantive factors, that could 

potentially allow for a useful approximate estimate of the wording effects variance independent 

of the rest of the model, which in the current context of dimensionality assessment is unknown 

(i.e., the number of substantive common factors). Based on this, we propose to estimate a 
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residual 𝑝 × 𝑝	correlation matrix, 𝐑𝐑, by subtracting the model-implied correlation matrix of the 

random intercept factor from the 𝑝 × 𝑝	sample correlation matrix, 𝐑𝐒, such that 

 𝐑𝐑 = 𝐑𝐒 − 𝟏φ𝟏$ + 𝐀	, (5) 

where 𝐀 is a 𝑝 × 𝑝 diagonal matrix that ensures unit values for the diagonal elements in 𝐑𝐑. 	

The next step is to estimate the number of substantive factors by applying the 

dimensionality procedures on 𝐑𝐑. The EGA method can be directly computed on the residual 

correlation matrix, given that it is positive definite. Therefore, if 𝐑𝐑 is not positive definite, it is 

first smoothed. In the case of PA, the empirical eigenvalues would be computed from R(, while 

the criterion eigenvalues would be computed in the usual way (e.g., from the correlation matrices 

of randomly permuted sample data).  

An important consideration in the development of the procedure is that in some instances it 

is necessary to model more than one method factor to account for the wording effects in the data. 

Particularly, with data composed of multiple substantial factors it may be necessary to model as 

many as one random intercept factor for each mixed-worded substantive factor (Garrido et al., 

2022; Kam, 2018). This presents a problem because in an exploratory context where 

dimensionality is being assessed, the number of substantive factors, and their composition, is part 

of the question being ascertained. Thus, we propose to model a single random intercept for all 

variables in a dataset, which would not require any prior knowledge or input by the researcher. 

This is based on the expectation that extracting a single random intercept factor might be enough 

to recover the substantive dimensionality in the data, even in cases where multiple wording 

factors are optimal. We expect that this single random intercept factor would provide a useful 

approximation to the wording variance, such that when subtracted from the correlation matrix, 

would weaken the method factors enough to no longer be detected by the retention methods.   
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Previous research suggests that if a random intercept factor is estimated on data weakly or 

uncontaminated of wording effects, the model either does not converge, or estimates very low 

loadings on the random intercept factor (Garrido et al., 2022). Therefore, we propose that 

nonconvergence of the random intercept model be interpreted as a signal of null or trivial 

wording variance and that the dimensionality estimates be computed in the usual way based on 

the sample correlation matrix. In those cases where the estimate of the random intercept factor 

does converge for uncontaminated data, we do not expect any meaningful loss in accuracy from 

our proposed method, as the amount of variance subtracted from the sample correlation matrix 

would generally be negligible. To summarize, Table A1 in the Appendix outlines the steps of the 

proposed procedure for substantive dimensionality estimation.  

The Present Study 

The current study was composed of a broad simulation study that aimed to (1) examine the 

impact of wording effects on the performance of traditional factor retention methods, and (2) 

examine the impact of wording effects on the performance of the same methods accompanied by 

our proposed procedure for substantive dimensionality estimation. In addition to the simulation, 

the methods were tested using an empirical dataset of Goldberg’s Big Five markers. The 

retention methods evaluated were PA and EGA.  

Based on the cited literature considering the impact of wording effects on factor models 

three hypotheses were postulated:  

H1: the methods employing the residual correlations will provide approximately equal 

estimates to the methods employing the sample correlations in the absence wording effects.  

H2: the methods employing the sample correlations will estimate more factors in the 

presence of wording effects, providing overestimates of the number of substantive factors. 
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H3: the methods employing the residual correlations will provide more accurate estimates 

of the number of substantive factors in the presence of wording effects than the methods 

employing the sample correlations. 

Method 

Simulation Design 

The performance of the factor retention methods was ascertained using Monte Carlo 

methods. The data were simulated from a model containing three substantive factors and two 

wording method factors (Figure 1). Two of the substantive factors were balanced, containing the 

same number of regular and reversed items, while the other substantive factor was composed of 

regular items only. Additionally, a wording factor was postulated for each of the substantive 

factors combining regular and reversed items. Because this model contains multiple wording 

factors, and because one of the substantive factors contains only regular items that are 

uncontaminated by wording effects, this is a particularly challenging test for the proposed 

method, which estimates a single random intercept factor with equal loadings across all items.  

The simulation design included two variables related to the wording effects and four 

variables known to affect dimensionality estimates. It can be summarized as follows: 

1. Wording factor loadings: WFL = .00, .15, .20, .25, and .30. 

2. Wording factor correlations: WFC = .00, .30, .50, .70, and 1.00. 

3. Substantive factor loadings: FL = .50, .60, and .70. 

4. Substantive factor correlations: FC = .00, .30, and .50. 

5. Variables per factor: VF = 6 and 10. 

6. Sample size: N = 300, 500, and 1000. 

PLEASE INSERT FIGURE 1 ABOUT HERE 
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The wording factor loading levels included the condition without wording effects (WFL = 

.00) to serve as a baseline, as well as the small and large levels of .15 and .30, which were 

considered in Savalei and Falk (2014). Additionally, we simulated the middle values of .20 and 

.25 to get a more nuanced perspective of the impact of this variable. The wording factor 

correlation levels were chosen to cover the range from orthogonal wording factors (WFC = .00) 

to wording factors with perfect convergence (WFC = 1.00). The latter condition is equivalent to 

simulating a single wording factor for all the indicators of the two balanced factors. Substantive 

factor loadings of .50, .60, and .70 may be considered poor, good, and very good, respectively 

(Comrey & Lee, 1992). The substantive factor correlations include the orthogonal condition 

(.00), as well as medium (.30) and large (.50) correlations (Cohen, 1992). Regarding the 

variables per factor, 6 and 10 can be considered as medium and large numbers for modern 

questionnaires. Moreover, six is the minimum to ensure that both the regular and reversed items 

sufficiently identify the balanced factors on their own (three indicators is the minimum to 

identify a factor). As far as sample size, values of 300, 500, and 1000 may be considered as 

small, medium, and large, respectively (Li, 2016). 

The design of the study was not fully crossed because when the WFL were .00 there were 

no WFC levels. Therefore, the design may be broken down into two parts: the conditions without 

wording effects (WFL = .00) composed of a 3 × 3 × 2 × 3 (FL × FC × VF × N) design, 

producing 54 conditions, and the conditions with wording effects (WFL > .00) composed of a 4 

× 5 × 3 × 3 × 2 × 3 (WFL × WFC × FL × FC × VF × N) design, producing 1,080 conditions. 

In total there were 1,134 conditions and 100 replicates for each, resulting in 113,400 data 

matrices.  

Data Generation 
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The sample data matrices were generated according to the following common factor model 

procedure: first, the reproduced population correlation matrix (with communalities in the 

diagonal) was computed as: 

 𝐑𝐃 = 𝚲𝛟𝚲* (6) 

where 𝐑𝐃 is the reproduced population correlation matrix, 𝚲 is the population factor loading 

matrix, and 𝛟 is the population factor correlation matrix.  

The population correlation matrix 𝐑𝐏 was then obtained by inserting unities in the diagonal 

of 𝐑𝐃, thereby raising the matrix to full rank. The next step was performing an eigen 

decomposition of 𝐑𝐏, such that: 

 𝐑𝐏 = 𝐕𝐃𝐕*,     (7) 

where 𝐕 is a matrix of eigenvectors and 𝐃 is a diagonal matrix of eigenvalues of 𝐑𝐏. The scale 

matrix 𝐒 was then computed:  

 𝐒 = 𝐕𝐃!/- (8) 

Finally, the sample matrix of continuous variables 𝐗 was subsequently computed as: 

 𝐗 = 𝐒𝐙 (9) 

where 𝐙 is a matrix of random standard normal deviates with rows equal to the sample size and 

columns equal to the number of variables. 

Dimensionality Estimation 

Considering the different variants of PA and EGA, a total of eight factor retention methods 

were evaluated. The retention methods that employed the sample correlation matrices included 

PA with PCA eigenvalues (PA) and exploratory graph analysis with GLASSO estimation 

(EGA). For PA, the mean (PAm) and 95th percentile (PA95) eigenvalue aggregating criteria were 

employed, while for EGA the Walktrap (EGAWT) and Louvain (EGALV) clustering algorithms 
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were examined. For the methods employing the residual correlation matrix after subtracting a 

random intercept (ri) factor, these were labelled correspondingly: riPAm, riPA95, riEGAWT, and 

riEGALV. If the EGALV suggested a hierarchical solution, the highest (more general) level 

solution was used. 

The retention methods using the residual correlation matrices after the subtraction of the 

random intercept model-implied correlation matrices were computed following the procedure 

outlined in Introduction and summarized in Table A1 in the Appendix. When at least one of the 

retention methods returned an error in the dimensionality estimate the replicate was discarded 

and a new sample data matrix was generated. This occurrence was exceedingly rare. The PAm 

and PA95 methods produced dimensionality estimates for all replicates. EGAWT, EGALV, riPAm, 

and riPA95 returned an error on one occasion (0.001%), and riEGAWT, and riEGALV failed to 

produce estimates for 13 replicates (0.01%).  

Assessment Criteria 

The factor retention methods were evaluated in their capacity to estimate the number of 

substantive factors in the population. Three complementary criteria were used to assess their 

performance: the hit rate (HR), the mean bias error (MBE), and the mean absolute error (MAE). 

The HR ranges from 0 to 1 and indicates the proportion of cases where the retention method 

correctly estimates the number of substantive factors. The MBE is the average of the differences 

between the estimates provided by the retention methods and the number of substantive factors 

in the population. An MBE of 0 indicates a lack of bias in the estimations, while positive and 

negative values indicate estimates of more and less factors, respectively, than the number of 

substantive factors present in the population. The MAE is the average of the absolute differences 

between the estimates provided by the retention methods and the number of substantive factors 
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in the population. A MAE of 0 indicates perfect estimations, while higher values indicate greater 

absolute differences between the estimated and population number of substantive factors.  

 To ascertain the impact of the manipulated variables, and their interactions, on the 

performance of the retention methods we performed analyses of variance (ANOVAs) for each 

method separately. The MAE criterion was specified as the dependent variable in the ANOVAs. 

The partial eta squared statistic (𝜂.-) was used to measure the size of the effects, with values of 

.01, .06, and .14, considered as small, medium, and large, respectively (Cohen, 1992). 

The descriptive statistics and ANOVAs were computed using the IBM SPSS software 

version 25. The simulation study was performed in the R programming language (version 4.0.3). 

The sample data was generated by inputting the population correlation matrices in the R function 

rmvnorm contained in the mvtnorm package (version 1.1-1; Genz et al., 2020). The EGA 

estimates were obtained using the function EGA contained in the R package EGAnet (version 

1.0.0; Golino & Christensen, 2021). The leading eigenvalue unidimensionality check was 

employed for EGA (Christensen et al., 2021). The PA estimates were obtained from R code 

developed by the authors. Following Garrido et al. (2013), reference eigenvalues were computed 

for each combination of number of variables and sample size considered in the study design. For 

each combination, 1000 sample data matrices of normal variates were generated from a null 

population correlation matrix. The random intercept factors were estimated using the R package 

lavaan (version 0.6-9; Rosseel, 2012). The nonpositive definite residual correlation matrices 

were smoothed with the Knol and Berger method using the function corSmooth of the fungible R 

package (version 1.99; Waller et al., 2021). This study was not preregistered. All R simulation 

codes and results, and the empirical data used in this study are available at 

https://osf.io/f92hu/?view_only=304cc8a3c0434f95914badde7a4fbfea.  
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Results 

Conditions without Wording Effects 

The evaluation of conditions without wording effects served two objectives: (1) to 

determine baseline values for the effectiveness of the retention methods, and (2) to assess the 

performance of the proposed “random intercept” methods when employed with data 

uncontaminated by wording effects. Regarding the former, the traditional formulations of the PA 

and EGA methods achieved approximately perfect accuracy in the estimation of the number of 

substantive factors (0.999 ≤ HR ≤ 1.000, -0.002 ≤ MBE ≤ 0.000, 0.000 ≤ MAE ≤ 0.002). 

Regarding the latter, the results showed that the proposed riPA and riEGA methods also 

achieved approximately perfect accuracy (0.999 ≤ HR ≤ 1.000, -0.002 ≤ MBE ≤ 0.000, 0.000 

≤ MAE ≤ 0.003). These results indicate that inadvertently using the proposed random intercept 

methods with uncontaminated data does not negatively impact the accuracy of the dimensionality 

estimates, thus supporting hypothesis H1. 

Conditions with Wording Effects 

The performance of the factor retention methods across the levels of the wording effects 

variables and in total are shown in Table 1, while the results across the rest of the manipulated 

variables are shown in Table 2. As can be seen in the tables, the mean and 95th percentile criteria 

for PA produced a very similar pattern of results, with the 95th percentile criterion being slightly 

superior. Likewise, the Walktrap and Louvain clustering algorithms led to almost identical 

patterns of performance for EGA, with Louvain producing marginally better estimates. Given 

these strong similarities, and to better streamline the commentary of the results, PAm and PA95 

will be referred to as PA, riPAm and riPA95 as riPA, EGAWT and EGALV as EGA, and riEGAWT 

and riEGALV as riEGA. Additionally, for each method the MBE and MAE were almost identical 
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across the levels of the independent variables. This implies that when the dimensionality 

estimates were incorrect, they always erred in the same direction. As the nonzero mean bias error 

values were positive for all methods, it denotes that the methods erred by suggesting more 

factors than there were substantive factors in the population.  

PLEASE INSERT TABLE 1 ABOUT HERE 

The results in Table 1 show that the worst-performing method was PA, followed at a step 

above by EGA, which proved to be more robust to wording effects than PA but was still 

considerably impacted. In the case of PA, it maintained almost perfect accuracy for WFL of 

0.15, but its accuracy rapidly decreased with higher WFL, to the point of near-zero hit rate levels 

for 0.30 WFL. Unlike PA, the EGA method maintained almost perfect accuracy for WFL of 

0.20, but it decreased noticeably with WLF of 0.25, and sharply for WFL of 0.30. Interestingly, 

while EGA was completely unaffected by the WFC, the accuracy of the PA method decreased 

consistently and notably with higher WFC. The MBE criteria revealed that both methods 

estimated more factors than there were substantive factors in the population and that with the 

highest WFL of 0.30 they suggested, on average, one more factor than the number of substantive 

factors. These findings support hypothesis H2. Regarding the proposed random intercept 

methods, riPA and riEGA improved considerably the performance of PA and EGA, respectively, 

thus supporting hypothesis H3. However, whereas riEGA maintained excellent levels of 

accuracy across all levels of WFL and WFC, riPA was only moderately accurate with WFL of 

0.30 or WFC of 0.00. In all, riEGA provided the best substantive dimensionality estimates of all 

the methods considered.  

PLEASE INSERT TABLE 2 ABOUT HERE 
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Table 2 shows the performance of the retention methods across the levels of the four 

independent variables not related to the wording effects. Regarding the FL, all the methods 

displayed higher accuracy with higher FL, with the effect being stronger for the traditional 

formulations of the retention methods. In terms of the FC, they had a negligible impact on all 

methods except EGA, which provided moderately less accurate dimensionality estimates with 

higher FC. On the other hand, all the methods except riEGA provided less accurate estimations 

with more VF, with the effect being stronger, again, for the traditional formulations of the 

dimensionality methods. Finally, N had a differential effect on PA and riPA compared to EGA 

and riEGA. Whereas larger levels of N led to less accurate estimates for PA and riPA, they 

produced more accurate estimates for EGA and riEGA.  

To further evaluate the retention methods, ANOVAs were conducted for each method with 

the MAE as the dependent variable and the six manipulated factors as the independent variables. 

Up to four-way interactions were estimated in the ANOVAs. The effect sizes for the ANOVAs 

are shown in Table 3, which includes only those interactions with a medium-sized or larger 

effect (𝜂.- ≥ 0.06) for at least one of the methods. Of note, riEGA was the only factor retention 

method that did not have an interaction with a large effect size (𝜂.- ≥ 0.14). 

PLEASE INSERT FIGURE 2 ABOUT HERE 

In the case of PA, the four-way interaction of WFL	× WFC × FL × VF achieved a near-

large effect, and it subsumed various two-way and three-way interactions with large effect sizes 

that included the same variables. This four-way interaction is shown in the top panel of Figure 2. 

The plot in the figure shows that while for some combinations of WFL and WFC the accuracy 

was equal for all FL levels, for others lower FL led to poorer estimates. This pattern was not 

uniform, as in some cases differential levels of accuracy across the FL were more pronounced for 
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lower WFC (e.g., WFL = 0.30 & WFC = 0.00) and in other cases for higher WFC (e.g., WFL = 

0.20 & WFC = 1.00). In addition, the pattern of differential performance across the FL became 

more pronounced for higher WFL. Finally, having higher VF led to poorer estimates with 

decreasing levels of WFC, and this worsening was generally more pronounced for lower FL. It 

should be noted that when the WFC = 0.00 there were two distinct wording factors, while for 

WFC = 1.00 there was only one wording factor simulated. With two wording factors, each was 

defined by fewer variables and was thus more difficult to detect by PA. In this case, having more 

VF helped to detect both wording factors, which can be seen in the plot as a MAE = 2.00 for the 

combination of WFL = 0.30, WFC = 0.00, FL = 0.50, and VF = 10. In general, PA only detected 

one of the two wording factors except when the WFL were highest. On the other hand, when 

WFC = 1.00 there was only one wording factor, which was easier to detect as it was defined by 

double the number of variables. Therefore, for WFC = 1.00 the MAE converged to a value of 

1.00 (there was an overestimation of one factor) if the WFL were sufficiently high (≥ 0.25).  

The results in Table 3 show that riPA produced a similar pattern of salient interactions as 

PA, with the same interactions obtaining the highest effect sizes for both groups of methods. 

Thus, for riPA the same four-way interaction of WFL	× WFC × FL × VF was interpreted 

(Figure 2, bottom panel). The interaction plot shows a much more consistent pattern of results 

for riPA as opposed to PA. For riPA the interaction indicated that having higher WFL led to a 

differential performance across the FL levels, with lower FL producing the worst estimates, but 

only for lower WFC, as the dimensionality estimates were all approximately perfect for WFC ≥ 

0.75. In addition, having higher VF deteriorated more the performance of structures with lower 

FL, but mostly only with WFL ≥ 0.25. As can be seen in Figure 2, the conditions where riPA 

produced the worst results were generally the same as those where PA produced its worst results, 
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indicating that while the random intercept factor helped considerably in approximating the 

substantive dimensionality, in the most difficult conditions for PA it was not enough.  

The EGA method had two large two-way interactions, WFL × FL and WFL × VF, which 

formed the three-way interaction WFL × FL × VF of medium size. This three-way interaction is 

shown in Figure 3. The plot in Figure 3 indicates that more VF led to worse dimensionality 

estimates for EGA, but that this detrimental effect was stronger for lower levels of FL and only 

occurred for WFL ≥ 0.25. Noteworthy, with WFL = 0.30, VF = 10, and FL = 0.50 the EGA 

produced its highest MAE of approximately 2.00, which corresponds to detecting the two 

wording factors.  

PLEASE INSERT FIGURE 3 ABOUT HERE 

Empirical Example 

The data employed in this empirical study was used by Arias et al. (2020), where they 

evaluated the impact of wording effects on factor modeling. The responses for this publicly 

available dataset were obtained from 725 U.S. citizens with ages ranging from 18 to 75 years (M 

= 34.70, SD = 11.70). The participants responded to 18 pairs of Goldberg’s (1992) Big Five 

adjective markers (36 items) corresponding to the dimensions of extraversion, emotional 

stability, and conscientiousness. Each dimension was balanced, containing the same number of 

positive (regular) and negative (reversed items). For each adjective that was administered its 

antonym was also included in the survey, resulting in 18 redundant items. Therefore, for the 

present study only 18 nonredundant items were analyzed (6 for each dimension). Considering the 

ordering of the items in the database provided by Arias et al. (2020), for each dimension the odd 

positive items and the even negative items were selected for the analyses to prevent item 

redundancies. The items were responded via a 5-point Likert scale that went from ‘very 
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inaccurate’ to ‘very accurate’. As the item responses were categorical, the dimensionality 

analyses were conducted on polychoric correlations. The EGA analyses were conducted on the 

functions EGA and riEGA of the R package EGAnet (version 1.0.1; Golino & Christensen, 

2022). Parallel analysis was performed with the function fa.parallel from the R package pysch 

(version 2.2.3; Revelle, 2022). The criterion eigenvalues for PA were computed from 1000 data 

matrices generated from random permutations of the empirical data.  

To reproduce our empirical example, we present the code below: 

# Install latest EGAnet package 
if(!"devtools" %in% row.names(installed.packages())){ 
    install.packages("devtools")} 
 
devtools::install_github("hfgolino/EGAnet") 
 
# Load libraries 
library(EGAnet); library(psych); library(foreign); library(ggplot2) 
 
# Load data (Goldberg.sav) 
data <- read.spss( 
    file.choose(), 
    to.data.frame = TRUE) 
 
# Make data numeric (and a matrix object) 
data <- simplify2array(lapply(data, as.numeric), higher=FALSE) 
 
# EGA with Walktrap 
## Regular EGA 
EGAWT <- EGA(data, algorithm="walktrap") 
 
## EGA with random-intercept model 
riEGAWT <- riEGA(data, algorithm="walktrap") 
 
# EGA with Louvain 
## Regular EGA 
EGALV <- EGA(data, algorithm="louvain") 
 
## EGA with random-intercept model 
riEGALV <- riEGA(data, algorithm="louvain") 
 
# Parallel analysis 
## Eigenvalues for regular PA 
PA <- fa.parallel(data, n.iter=1000, sim=FALSE, fa="pc", cor="poly",  
                  plot= FALSE, show.legend= FALSE) 
Eigen_sample <- PA$pc.values 
Eigen_randommean <- apply(PA$values,2,mean) 
Eigen_randomperc95 <- apply(PA$values,2,quantile,.95) 
 
## Eigenvalues for PA with random-intercept model 
Eigen_residual <- eigen(riEGAWT$RI$correlation)$value 
 
## Eigenvalue plots for regular and random-intercept PA 
vars<-c("Sample", "Residual", "Random mean", "Random perc95") 
summary_pc<-data.frame(eig =c(Eigen_sample,Eigen_residual, 
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                       Eigen_randommean,Eigen_randomperc95), 
                       var  = rep(vars,each=length(Eigen_sample)), 
                       num = rep(1:length(Eigen_sample),4)) 
str(summary_pc) 
ggplot(summary_pc,aes(x=num,y=eig,colour=var,group=var, shape=var))+ 
geom_line()+ 
  geom_point()+ 
  scale_shape_manual("data",values=c(1,2,3,4),breaks=vars)+ 
  scale_color_manual("data",values=c("black","darkgrey","grey","lightgrey"), 
                     breaks=vars)+ 
  scale_y_continuous(name='Eigenvalue',breaks=0:max(summary_pc$eig+1)) + 
  scale_x_continuous(name='Factor Number', 
                     breaks=min(summary_pc$num):max(summary_pc$num)) + 
  ggtitle("Parallel Analysis") + 
  theme_bw() 

The dimensionality plots for the EGA methods are shown in Figure 4, while the plots for 

the PA methods are presented in Figure 5. Regarding the estimates of the traditional EGA 

methods, the results indicate that both EGAWT and EGALV suggested four dimensions be 

retained, rather than the three theoretical dimensions. The two methods, however, differed on the 

item groupings: in the EGAWT solution the negative items from the extraversion and emotional 

stability scales were grouped together thus creating an additional dimension, while for EGALV 

the added dimension was composed of three negative items, two from extraversion and one from 

conscientiousness. The dimensionality estimates of the traditional formulations of the PA 

methods, PA95 and PAm, also suggested that four factors be retained, as the sample eigenvalues 

corresponding to the fourth factor were higher than both the 95th percentile and mean criterion 

eigenvalues, while those corresponding to the fifth factor were lower.  

PLEASE INSERT FIGURE 4 ABOUT HERE 

To obtain the estimates from the proposed methods, a random intercept factor was first 

estimated. The standardized item loadings on this random intercept factor were 0.27. A residual 

correlation matrix was obtained by subtracting the model-implied correlation matrix of the 

random intercept factor from the sample polychoric correlation matrix. The estimates of the 

“random intercept” methods on this residual correlation matrix suggested that three factors be 

retained, in line with the theoretical expectations. Both riEGAWT and riEGALV produced three-
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factor solutions with all the items grouping according to their theoretical dimension and with 

each dimension clearly delineated in the network space. Similarly, both riPA95 and riPAm 

suggested three factors be retained, as the fourth factor eigenvalue from the residual correlation 

matrix was lower than both the 95th and mean criterion eigenvalues.  

PLEASE INSERT FIGURE 5 ABOUT HERE 

Discussion 

Response biases related to wording effects are ubiquitous for data obtained from mixed-

worded psychological scales (Tomás et al., 2013). Although extensive empirical research has 

shown that wording effects negatively impact latent dimensionality estimates, there is scarce 

systematic research assessing the problem and no validated solutions had been offered until now. 

The present study addressed these issues by proposing a substantive dimensionality estimation 

procedure and systematically testing it through a broad simulation study that employed the EGA 

and PA retention methods. Additionally, an empirical study was conducted, and a tutorial was 

offered to exemplify the results of the simulation. Overall, the findings indicate that combining 

the proposed procedure with both EGA and PA achieves high accuracy in estimating the 

substantive latent dimensionality underlying the data, but that EGA is superior. Additionally, the 

present findings shed light into the complex ways that wording effects impact the dimensionality 

estimates when the response bias in the data is ignored. 

Main Findings 

Traditional Dimensionality Estimation with Wording Effects 

The first objective of this study was to systematically evaluate the impact of wording 

effects on the dimensionality estimates of recommended factor retention methods. The results 

from the simulation indicate, as expected, that the retention methods suggest more factors to 
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retain in the presence of wording effects. Thus, with data contaminated by wording effects the 

dimensionality estimates no longer reflect the underlying substantive dimensionality, but rather, 

they suggest a combination of the number of substantive and method factors. This finding is 

consistent with the wording effects empirical factor-analytic literature (García-Batista et al., 

2021; Yang et al., 2018; Zhang & Savalei, 2016). However, novel findings of this study show 

that the impact of the wording effects on the dimensionality estimates is complex, and notably 

different for the PA and EGA retention methods.  

In the case of PA, both the wording factor loadings and wording factor correlations have a 

strong impact on the dimensionality estimates, and they interact with each other. Because PA is 

based on the size of the eigenvalues, it will more consistently detect the wording factors when 

they are better defined (Garrido et al., 2013). This occurs when the wording factor loadings are 

higher, but also when the wording factor is defined by more variables. The latter is partly a 

function of the wording factor correlations. With higher wording factors correlations, the 

multiple wording factors increasingly merge to form a single, larger, wording factor, that is 

easier to detect for PA. This implies that higher wording factor correlations will lead to more 

consistent overestimates from PA. However, in the conditions where each wording factor is 

sufficiently well defined, that is, with higher wording factor loadings and more variables per 

substantive factor, the overestimation will be greater with lower wording factor correlations, as 

PA will detect each wording factor. Additionally, a fourth key variable that interacts with the 

three previously discussed, is the substantive factor loadings. Generally, with lower substantive 

factor loadings PA is better able to detect the wording factors. This finding can be explained 

through the inherent dependencies of successive eigenvalues (Saccenti et al., 2016). With lower 

factor loadings, the substantive factors capture a smaller proportion of the total variance in the 
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data, leaving more room for the wording factors to attain higher eigenvalues due to sampling 

error and capitalization on chance. As a result, the wording factors become more easily 

detectable by PA. 

Regarding the EGA method, its dimensionality estimates were considerably less impacted 

by the wording effects than PA. Because EGA based on the optimal clustering of variables, and 

not on the size of the eigenvalues, the substantive structure can remain the optimal choice for 

lower and moderate levels of wording factor loadings. Nevertheless, with the highest level of 

wording factor loadings considered here (0.30), EGA usually suggested a dimensionality greater 

than the number of substantive factors. EGA also overestimated the number of substantive 

factors with lower substantive factor loadings and more variables per factor, with the two 

interacting in their impact on EGA. The factor loadings are generally the variable with the 

greatest influence on the performance of EGA (Golino et al., 2020). Thus, as the wording factor 

loadings increase, the optimal clustering may shift from being substantially driven to becoming 

more method driven. Likewise, with more variables per substantive factor, the regular and 

reversed-coded items may more easily form their own separate clusters, as they are better 

defined. On the other hand, unlike PA, the wording factor correlations had zero impact on the 

performance of EGA. This striking difference highlights the complex nature of the impact that 

wording effects can have on dimensionality estimates across methods.  

Substantive Dimensionality Estimation with Wording Effects 

The second objective of this study was to propose and test a procedure for substantive 

dimensionality estimation. Although the increased dimensionality suggested by factor retention 

methods in the presence of wording effects is not incorrect per se, its usefulness is severely 

limited because researchers have no clear guidance on what factor model to specify. That is, the 
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dimensionality estimate does not inform if one or more of the suggested dimensions are wording 

factors, and thus many combinations of substantive + wording factors would be plausible and 

potentially need to be tested. Also, for dimensionality methods like EGA that inform of the item 

groupings, wording effects could produce artifactual and uninterpretable solutions. For these 

reasons, developing a procedure that informs of the substantive dimensionality was thought to be 

highly beneficial. Our proposed procedure aimed to achieve this goal by estimating a random 

intercept factor with unit loadings for all the regular and unrecoded reversed items, and then 

subtracting from the sample correlation the variance implied by this factor.  

The findings from the simulation and empirical studies indicate that the proposed random 

intercept procedure in combination with EGA or PA is highly accurate in estimating the 

substantive dimensionality underlying the data. This result has several implications. First, it 

underscores the good performance of the RIIFA strategy in accounting for the wording effects 

variance, which is line with previous simulation and empirical research (Aichholzer, 2014; Arias 

et al., 2020; de la Fuente & Abad, 2020; Garrido et al., 2022; Nieto et al., 2021; Savalei & Falk, 

2014; Schmalbach et al., 2020; Weydmann et al., 2020). Second, it demonstrates that estimating 

the random intercept factor separately from the substantive structure can result in a useful 

approximation of the wording variance in the data. Third, it shows that even if multiple wording 

factors underlie the observed variables, subtracting from the sample correlation matrix a single 

random intercept factor is often enough for the dimensionality methods to accurately estimate the 

substantive dimensionality. Regarding this latter point, the simulations results indicated that for 

the most difficult conditions of well-defined multiple wording factors (high wording factor 

loadings, low wording factor correlations, and many variables per substantive factor) the random 

intercept procedure in conjunction with PA was inaccurate, while in combination with EGA it 
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still performed excellently. As previously discussed, this difference has its main roots in the 

difference between eigenvalue based (PA) and cluster based (EGA) dimensionality estimation.  

Limitations and Future Directions 

This study has several limitations that should be considered when assessing its findings. As 

with any simulation study, the decisions regarding the variables to manipulate and their levels, 

have an impact on the results. We attempted to perform a broad simulation that manipulated 

many of the most relevant variables and endeavored to include a range of levels that may be 

encountered in practice. Nevertheless, more research is necessary to establish the generalizability 

of our findings. Particularly, in our simulation design the factors composed of mixed-worded 

items were balanced (same number of regular and reversed items) and their loadings on the 

method factors were homogeneous. Future research should examine the performance of the 

proposed procedure for unbalanced scales and unequal method factor loadings. It should be 

noted, in this regard, that the RIIFA methodology has shown good performance in both of these 

unfavorable conditions (de la Fuente & Abad, 2020; Savalei & Falk, 2014). Another clear 

limitation of the proposed procedure is that it assumes that the substantive and wording factors 

are uncorrelated, something that under some scenarios may not hold. If the substantive and 

wording factors are correlated to a meaningful degree, the random intercept factor that is 

subtracted from the sample correlated matrix is likely to contain unwanted substantive variance 

that could negatively impact the dimensionality assessment. This limitation, nonetheless, is 

shared with the general RIIFA model, as well as other strategies for modeling method factors, 

that need orthogonality between the substantive and method factors for model identification 

(Maydeu & Coffman, 2006).  

Practical Implications 
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The current findings lend support to the use of the proposed random intercept 

dimensionality procedure for the estimation of the number of substantive factors underlying 

mixed-worded scales. It is essential that researchers are aware that this procedure is only 

appropriate for unrecoded data of constructs measured through a combination of regular and 

reversed items. As shown by the results of the simulation, however, it is not necessary that all 

constructs are measured by a combination of both types of items. This is particularly important 

for those cases where there are substantive dimensions underlying the data that had not been 

anticipated by theory. Additionally, the evidence indicates that researchers can use this procedure 

as a generalized method for mixed-worded scales. That is, the procedure will accurately estimate 

the substantive dimensionality of the data even when the amount of wording effects is zero or 

negligible. This provides an important amount of flexibility in exploratory contexts where the 

characteristics of the data are less predictable. Also, and particularly for the random intercept 

EGA, the procedure can accurately estimate the substantive dimensionality even in the presence 

of multiple method factors in the population.  

According to the findings of the simulation, the random intercept procedure led to accurate 

estimations of the substantive dimensionality for both EGA and PA. However, EGA was 

superior, providing excellent accuracy in some conditions where PA faltered. Because of this, we 

consider the random intercept EGA, currently available in the R package EGAnet, to be the 

method of choice for dimensionality estimation with data from mixed-worded scales. In addition, 

EGA provides an estimate of the item groupings and of the stability of the latent solution 

(Christensen & Golino, 2021), which make it a highly useful dimensionality assessment method. 

Of note for both EGA and PA, the variants examined (Walktrap vs. Louvain for EGA and the 
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mean vs. the 95th percentile eigenvalue for PA) produced similar dimensionality estimates, 

making this selection a choice of minor importance. 

Another relevant issue for applied researchers concerns the specification of the factor 

models after obtaining the dimensionality estimates from the random intercept procedure. When 

researchers move on to specify an unrestricted factor model it may be necessary to add one or 

more wording factors. This can be achieved through the exploratory structural equation modeling 

framework (ESEM; Asparouhov & Muthén, 2009). With ESEM, researchers can specify an 

unrestricted “exploratory” structure for the substantive factors, and a restricted “confirmatory” 

one for the wording factors, based on the RIIFA model. To determine if wording factors are 

necessary, and if they are, how many should be modeled, there are some straightforward 

guidelines that have been recently proposed (Garrido et al., 2022). For models that include a 

wording factor per substantive factor that is composed of regular and reversed items, researchers 

may use the item groupings provided by the random intercept EGA to determine which items 

should load on the different wording method factors.  
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Appendix 

Table A1 

Proposed Algorithm for Substantive Dimensionality Estimation 

1. compute the sample correlation matrix  
2. if the sample correlation matrix is non-positive definite 
3.      smooth the sample correlation matrix 
4. end 
5. compute the random intercept model for the unrecoded dataset 
6. if the estimation of the random intercept model converges 
7.       compute the residual correlation matrix 
8.           if the residual correlation matrix is non-positive definite 
9.               smooth the residual correlation matrix 
10.         end 
11.     compute the dimensionality estimates on the residual correlation matrix  
12. else 
13.     compute the dimensionality estimates on the sample correlation matrix 
14. end 
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Table 1 

Performance of the Factor Retention Methods Across the Wording Effects Variables 

 WFL  WFC   
Method 0.15 0.20 0.25 0.30   0.00 0.30 0.50 0.70 1.00   Total 

 Hit Rate 
PAm 0.99 0.77 0.36 0.10  0.74 0.63 0.54 0.47 0.37  0.55 
PA95 0.99 0.82 0.42 0.13  0.78 0.67 0.58 0.51 0.41  0.59 
EGAWT 1.00 0.98 0.82 0.37  0.79 0.79 0.79 0.79 0.79  0.79 
EGALV 1.00 0.98 0.82 0.36  0.79 0.79 0.79 0.79 0.79  0.79 
riPAm 1.00 1.00 0.94 0.81  0.76 0.93 0.99 1.00 1.00  0.94 
riPA95 1.00 1.00 0.96 0.84  0.80 0.95 0.99 1.00 1.00  0.95 
riEGAWT 1.00 1.00 0.99 0.94  0.97 0.98 0.99 0.99 0.99  0.98 
riEGALV 1.00 1.00 1.00 0.96  0.98 0.99 0.99 0.99 1.00  0.99 

 Mean Bias Error 
PAm 0.01 0.23 0.67 1.04  0.42 0.42 0.46 0.53 0.63  0.49 
PA95 0.00 0.18 0.59 0.98  0.34 0.36 0.42 0.49 0.59  0.44 
EGAWT 0.00 0.02 0.26 1.10  0.35 0.35 0.35 0.35 0.34  0.35 
EGALV 0.00 0.02 0.26 1.10  0.34 0.35 0.35 0.35 0.34  0.35 
riPAm 0.00 0.00 0.06 0.19  0.24 0.07 0.01 0.00 0.00  0.06 
riPA95 0.00 0.00 0.04 0.15  0.19 0.04 0.00 0.00 0.00  0.05 
riEGAWT 0.00 0.00 0.01 0.07  0.04 0.02 0.02 0.01 0.01  0.02 
riEGALV 0.00 0.00 0.00 0.05  0.03 0.02 0.01 0.01 0.01  0.01 

 Mean Absolute Error 
PAm 0.01 0.23 0.67 1.04  0.42 0.42 0.46 0.53 0.63  0.49 
PA95 0.01 0.18 0.60 0.98  0.35 0.36 0.42 0.49 0.59  0.44 
EGAWT 0.00 0.02 0.26 1.10  0.35 0.35 0.35 0.35 0.34  0.35 
EGALV 0.00 0.02 0.26 1.10  0.34 0.35 0.35 0.35 0.34  0.35 
riPAm 0.00 0.00 0.06 0.19  0.24 0.07 0.01 0.00 0.00  0.06 
riPA95 0.00 0.00 0.04 0.16  0.20 0.05 0.01 0.00 0.00  0.05 
riEGAWT 0.00 0.00 0.01 0.07  0.04 0.02 0.02 0.01 0.01  0.02 
riEGALV 0.00 0.00 0.00 0.05  0.03 0.02 0.01 0.01 0.01  0.01 
Note. WFL = wording factor loadings; WFC = wording factor correlations; PAm = parallel 
analysis with the mean criterion; PA95 = parallel analysis with the 95th percentile criterion; 
EGAWT = exploratory graph analysis with the Walktrap algorithm; EGALV = exploratory graph 
analysis with the Louvain algorithm; ri = random intercept. Cells highlighted in light grey 
correspond to hit ratios between 0.90 and 0.94, mean bias errors between 0.11 and 0.20, and mean 
absolute errors between 0.11 and 0.20. Cells bolded and highlighted in dark grey correspond to hit 
ratios between 0.95 and 1.00, mean bias errors between 0.00 and 0.10, and mean absolute errors 
between 0.00 and 0.10.  
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Table 2 

Performance of the Factor Retention Methods Across the Remaining Independent Variables 

 FL  FC  VF  N 
Method 0.50 0.60 0.70   0.00 0.30 0.50   6 10   300 500 1000 

 Hit Rate 
PAm 0.41 0.56 0.69  0.55 0.55 0.56  0.66 0.45  0.61 0.55 0.50 
PA95 0.46 0.60 0.72  0.59 0.59 0.59  0.70 0.48  0.66 0.59 0.53 
EGAWT 0.66 0.84 0.88  0.86 0.79 0.73  0.88 0.70  0.76 0.79 0.83 
EGALV 0.65 0.84 0.88  0.86 0.79 0.72  0.88 0.70  0.76 0.78 0.83 
riPAm 0.89 0.94 0.98  0.94 0.94 0.94  0.97 0.90  0.95 0.94 0.92 
riPA95 0.91 0.95 0.98  0.95 0.95 0.94  0.98 0.92  0.96 0.95 0.93 
riEGAWT 0.95 1.00 1.00  0.99 0.99 0.97  0.98 0.99  0.97 0.98 0.99 
riEGALV 0.97 1.00 1.00  0.99 0.99 0.98  0.99 0.99  0.98 0.99 1.00 

 Mean Bias Error 
PAm 0.67 0.48 0.32  0.49 0.49 0.48  0.36 0.62  0.42 0.49 0.56 
PA95 0.60 0.43 0.29  0.45 0.44 0.43  0.30 0.57  0.35 0.44 0.53 
EGAWT 0.59 0.25 0.20  0.22 0.35 0.47  0.18 0.52  0.39 0.36 0.30 
EGALV 0.59 0.25 0.20  0.22 0.35 0.46  0.18 0.52  0.38 0.36 0.30 
riPAm 0.11 0.06 0.02  0.06 0.06 0.06  0.03 0.10  0.04 0.06 0.08 
riPA95 0.08 0.04 0.02  0.05 0.05 0.04  0.02 0.08  0.02 0.05 0.07 
riEGAWT 0.06 0.00 0.00  0.01 0.02 0.03  0.02 0.02  0.03 0.02 0.01 
riEGALV 0.04 0.00 0.00  0.01 0.01 0.02  0.01 0.01  0.03 0.02 0.00 

 Mean Absolute Error 
PAm 0.67 0.48 0.32  0.49 0.49 0.48  0.36 0.62  0.42 0.49 0.56 
PA95 0.61 0.43 0.29  0.45 0.44 0.44  0.31 0.57  0.36 0.44 0.53 
EGAWT 0.59 0.25 0.20  0.22 0.35 0.47  0.18 0.52  0.39 0.36 0.30 
EGALV 0.59 0.25 0.20  0.22 0.35 0.46  0.18 0.52  0.38 0.36 0.30 
riPAm 0.11 0.06 0.02  0.06 0.06 0.06  0.03 0.10  0.05 0.06 0.08 
riPA95 0.10 0.05 0.02  0.05 0.05 0.06  0.03 0.08  0.04 0.05 0.07 
riEGAWT 0.06 0.00 0.00  0.01 0.02 0.04  0.02 0.02  0.03 0.02 0.01 
riEGALV 0.04 0.00 0.00  0.01 0.01 0.02  0.01 0.01  0.03 0.02 0.00 
Note. FL = substantive factor loadings; FC = substantive factor correlations; VF = variables per factor; N = 
sample size; PAm = parallel analysis with the mean criterion; PA95 = parallel analysis with the 95th 
percentile criterion; EGAWT = exploratory graph analysis with the Walktrap algorithm; EGALV = 
exploratory graph analysis with the Louvain algorithm; ri = random intercept. Cells highlighted in light grey 
correspond to hit ratios between 0.90 and 0.94, mean bias errors between 0.11 and 0.20, and mean absolute 
errors between 0.11 and 0.20. Cells bolded and highlighted in dark grey correspond to hit ratios between 0.95 
and 1.00, mean bias errors between 0.00 and 0.10, and mean absolute errors between 0.00 and 0.10.  
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Table 3 

ANOVA Effect Sizes for the Mean Absolute Error Dependent Variable 

Effect PAm PA95 EGAWT EGALV riPAm riPA95 riEGAWT riEGALV 
Main effects         
WFL 0.72 0.71 0.65 0.67 0.26 0.20 0.04 0.03 
WFC 0.10 0.12 0.00 0.00 0.33 0.27 0.01 0.01 
FL 0.25 0.22 0.22 0.23 0.08 0.06 0.03 0.03 
FC 0.00 0.00 0.09 0.09 0.00 0.00 0.01 0.00 
VF 0.22 0.23 0.21 0.22 0.06 0.04 0.00 0.00 
N 0.05 0.07 0.01 0.01 0.01 0.01 0.00 0.01 
Two-way interactions         
WFL × FC 0.00 0.00 0.07 0.08 0.00 0.00 0.01 0.00 
WFC × FL 0.04 0.03 0.00 0.00 0.11 0.09 0.01 0.01 
WFL × FL 0.09 0.09 0.19 0.20 0.08 0.06 0.07 0.06 
WFC × VF 0.03 0.03 0.00 0.00 0.09 0.09 0.00 0.00 
WFL × VF 0.09 0.11 0.33 0.34 0.07 0.07 0.00 0.00 
WFL × WFC 0.16 0.14 0.00 0.00 0.39 0.35 0.01 0.01 
Three-way interactions         
WFL × FL × FC 0.00 0.00 0.08 0.08 0.00 0.00 0.02 0.00 
WFL × FL × VF 0.03 0.02 0.09 0.10 0.01 0.01 0.00 0.00 
WFL × WFC × FL 0.16 0.13 0.01 0.01 0.12 0.10 0.02 0.02 
WFL × WFC × VF 0.15 0.17 0.00 0.00 0.10 0.11 0.00 0.00 
Four-way interactions         
WFL × WFC × FL × VF 0.13 0.11 0.00 0.00 0.10 0.08 0.00 0.00 
Note. WFL = wording factor loadings; WFC = wording factor correlations; FL = substantive factor loadings; FC 
= substantive factor correlations; VF = variables per factor; N = sample size; PAm = parallel analysis with the 
mean criterion; PA95 = parallel analysis with the 95th percentile criterion; EGAWT = exploratory graph analysis 
with the Walktrap algorithm; EGALV = exploratory graph analysis with the Louvain algorithm; ri = random 
intercept. Cells bolded and highlighted in dark grey indicate large partial eta squared effect sizes (≥ 0.14). 
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Figure 1 

Data Generating Model 

 

Note. F1-F3 = substantive factors; WF1-WF2 = wording factors; X1-X18 = items. Squares filled in grey indicate 
unrecoded reversed items. Unidirectional arrows linking circles and rectangles represent the factor loadings. 
Bidirectional arrows linking the circles represent the factor covariances/correlations. Bidirectional arrows 
connecting a single circle represent the factor variances. For simplicity, the item uniquenesses have been omitted. 
The number of items per factor had two levels, 6 (as depicted in the plot) and 10.   
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Figure 2 

ANOVA Interactions for PAm and riPAm with the MAE Dependent Variable  

 

Note. PAm = parallel analysis with the mean criterion; riPAm = random intercept parallel analysis with the mean 
criterion; MAE = mean absolute error; WFL = wording factor loadings; WFC = wording factor correlations; FL = 
factor loadings; VF = variables per factor; 𝜂!" = partial eta squared effect size. 
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Figure 3 

ANOVA Interaction for EGALV with the MAE Dependent Variable  

 

Note. EGALV = exploratory graph analysis with the Louvain algorithm; MAE = mean absolute error; WFL = 
wording factor loadings; FL = factor loadings; VF = variables per factor; 𝜂!" = partial eta squared effect size. 
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Figure 4 

Exploratory Graph Analysis Dimensionality Estimates for the Empirical Data 

 

Note. EGAWT = exploratory graph analysis with the Walktrap algorithm; EGALV = exploratory graph analysis with 
the Louvain algorithm; ri = random intercept; E1p = extraverted; E2n = unenergetic; E3p = talkative; E4n = timid; 
E5p = assertive; E6n = unadventurous; S1p = calm; S2n = tense; S3p = at ease; S4n = envious; S5p = stable; S6n = 
discontented; C1p = organized; C2n = irresponsible; C3p = conscientiousness; C4n impractical; C5p = thorough; 
C6n = lazy; The E, S, and C in the item names denote the dimensions of extraversion, emotional stability, and 
conscientiousness, respectively. The p after the item number denotes a positive (regular) item. The n after the item 
number denotes a negative (reversed) item. The reversed items were left unrecoded for the analyses.  
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Figure 5 

Parallel Analysis Dimensionality Estimates for the Empirical Data 

 

Note. Sample = eigenvalues derived from the sample correlation matrix; Residual = eigenvalues derived from the 
residual correlation matrix obtained after subtracting from the sample correlation matrix the model-implied 
correlation matrix of the random intercept factor; Random mean = mean eigenvalues computed from 1000 datasets 
obtained through random permutations of the sample data; Random perc95 = 95th percentile eigenvalues computed 
from 1000 datasets obtained through random permutations of the sample data.  
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