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ABSTRACT

The current paper compared the empirical structure of 280 variables from the 2016 wave of the Health and Retirement Study (N
= 16,327) estimated using exploratory graph analysis with a theoretical structure based on 20 broad domains of intrinsic capacity,
functional ability and environment, identified in the International Classification of Functioning, Disability and Health compendium.
The results showed that a structure with 21 first-order factors had the best fit to the data (i.e., lowest total entropy fit value) for
both the training and validation sample. A second-order exploratory graph analysis was applied on the interfactor correlation
matrix and identified five second-order factors. The five-factor structure presented a better fit than the theoretical three-factor
structure (approximately) representing intrinsic capacity, functional ability and environment. A close inspection of the network
structure generated by analyzing the rotated network loadings of the 21 first-order factors revealed an interplay between cognition,
mobility, need for help with daily activities, walking capacity, physical capacity, liver functioning, positive affect and perceived
mastery, low perceived control, and depression/negative mood. Combined, our results can help guide future research by providing
a framework for estimating the structure of multi-domain aging research as well as generating questions that can be addressed in
future research.

Introduction

As the human population gets older around the world, the need to address aging issues increases. The study of
aging processes have been conducted in the past decades with a strong emphasis on health deficits (e.g., diseases,
disabilities, limitations). The logic behind this focus is straightforward: the socio-economic cost of a population
living longer with multimorbidity and disabilities is high1. Despite the relevance of studying health deficits, aging
processes should be investigated more broadly. In this line, the World Health Organization proposed a comprehensive
response to population aging as the promotion of healthy aging across the life-course2.

The first WHO’s Action Plan on Ageing and Health3 called for a fundamental transformation in policies and
institutions to enable individuals in the second half of life to achieve their needs and aspirations, embracing diversity
and narrowing health inequities. A second action plan on aging and health termed ‘A Decade of Healthy Ageing:
From 2020 to 2030 ’ will address relevant questions related to aging such as the quantification of the baseline
indicators of healthy aging in countries, the projections of Member State-endorsed outcome and impact indicators
through 2030, and the use of evidence-informed interventions as a way to improve older adults’ intrinsic capacities
and functional ability2.

To address the topics of the WHO’s action plan on aging and health, it is necessary to operationalize and measure
healthy aging in a meaningful, valid, and reliable way. Michel and Sadana4 recently reviewed publications in the
area of healthy aging and summarized the types of assessments and measures used by the researchers. The authors



verified that the studies use eight general categories of variables: (1) education, (2) diet, (3) physiological/physical
health, (4) mental health, (5) daily functioning, (6) personal perception (e.g., engagement, goals, satisfaction, quality
of life), (7) social life, and (8) environmental characteristics. Each study assessed different domains (or combinations
of domains) with different elements in each domain demonstrating the lack of a reference criterion or integrative
theoretical model for assessing healthy aging4.

Such an integrative theoretical model is a necessary step to construct measures of healthy aging and guide the
analysis and interpretation of existing aging-related datasets that employ multiple scales, tests, and questionnaires.
An integrative theoretical model of healthy aging was developed using the WHO’s definition of healthy aging2,3
that combined elements from three concepts: intrinsic capacity (IC), functional ability (FA), and environment
(EN). Beard et al.3 defines intrinsic capacity as a combination of physical and mental capacities of an individual,
functional ability as the health related attributes that enable people to be and do what they value, and environment
as a combination of factors in the extrinsic world (understood in the broadest sense and including physical, social
and policy environments) that form the context of an individual’s life5. The combination of IC, FA, and EN forms
the general definition of healthy aging adopted by the WHO6: the process of developing and maintaining functional
ability that enables well-being in older age, with functional ability determined by the intrinsic capacity of the
individual, the environments they inhabit, and their interactions.

The three broad concepts of healthy aging (IC, FA, EN) are informed by the WHO’s International Classification of
Functioning, Disability and Health (ICF) compendium3. ICF is a normative classification system of health that can
be used as a starting point for the development of an integrative theoretical model to inform the operationalization
of healthy aging concepts, development of new measures, and interpretation of results from existing aging research
data5. Figure 1 presents general domains of IC, FA, and EN as factors of the ICF compendium, which were grouped
by global experts2. IC combines several domains of mental and body functioning: (1) sensory, (2) mental, (3)
neuromusculoskeletal, (4) voice and speech, (5) cardiovascular, (6) haematological, (7) immune, (8) respiratory, (9)
endocrine, (10) genitourinary, (11) reproductive, (12) integumentary and (13) metabolic. FA is comprised of the
following broad domains: (1) basic needs, (2) learn, grow and make decisions, (3) mobility, (4) build and maintain
relationships, (5) contribute to community/society. Finally, environment includes five broad domains: (1) products
and technology, (2) natural and human-made environment, (3) support and relationship, (4) attitudes and (5) service,
systems and policies.

Figure 1. Broad domains of intrinsic capacity, functional ability, and environment.
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The broad domains of IC are consistent with the ICF’s body functions and structures, while the broad domains of
FA and EN draw on the ICF classifications for activities, participation, and environments. The names of the broad
domains of IC, FA and EN are slightly different from the original ICF framework—these changes were necessary to
fit the target population, definitions, and framework of healthy aging.

The use of the ICF framework to conceptualize broad domains of healthy aging was pioneered by Cesari et al.5 with
the goal to pave the way for its operationalization and measurement. However, they focused on IC only and did
not check the suitability of their theoretical model with empirical data. The current paper seeks to investigate the
structural validity of the IC, FA, and EN broad domains (Figure 1) using data from the 2016 wave of the Health
and Retirement Study (HRS), a large-scale study on aging. The structural validity of the healthy aging domains will
be investigated using an innovative approach for dimensionality assessment termed Exploratory Graph Analysis
(EGA7,8). The fit of the theoretical structure (23 broad domains of IC, FA and EN; Figure 1) will be compared
to the fit of data-driven structures estimated using EGA, using the total entropy fit index9. After estimating the
structural organization of the broad domains (first-order factors), we will estimate the structure of the second-order
factors (i.e., IC, FA, and EN).

A secondary goal of the current paper is to work as a detailed guide for how to examine the dimensionality of
healthy-aging data in two levels of analysis (first-order and second-order factors), introducing new techniques and
strategies that are part of the EGA framework. Therefore, in the Methods section we briefly introduce the EGA
approach, describe a new fit index for dimensionality assessment termed total entropy fit index (TEFI)9, and present
a strategy to optimize the estimation of the dimensionality structure via EGA using the TEFI index. In this section,
we also introduce network loadings, a network metric roughly equivalent to factor loadings10, and how it can be used
to estimate the structure of second-order factors. A brief proof-of-concept simulation for second-order EGA is also
presented in the Methods section.

Results

For each sample (training, N = 9,796; validation, N = 6,531), the EGA technique was employed using two network
techniques, i.e. the Gaussian graphical model (GGM11) and the triangulated maximally filtered graph (TMFG?, 8, 12),
varying the number of steps in the Walktraph algorithm, and computing the total entropy fit index to detect the
optimal dimensionality structure.

Table 1 shows the TEFI per EGA technique and number of steps used in the Walktrap algorithm as well as the
number of dimensions estimated. Since TEFI is a relative measure of fit, to check the best fitting structure is
necessary to compare two or more dimensionality solutions (number of factors and placement of items per factor).
The lower the value of TEFI, the better the fit of the structure to the data. EGA with the GGM estimation
presented the lowest TEFI when the Walktrap algorithm was implemented with 10 steps, estimating a structure
with 30 factors (TEFI = -641.84). EGA with the TMFG method presented the lowest TEFI when the number of
steps was four, estimating 21 factors (TEFI = -706.89). The best fitting EGA structure was obtained by the TMFG
method.

Table 1. Total entropy fit index per number of steps of the Walktrap algorithm and network technique.

TEFI (Dimensions)
Walktrap Steps EGA GGM EGA TMFG

3 -639.10 (31) -621.24 (18)
4 -602.57 (24) -706.89 (21)
5 -622.93 (26) -682.86 (20)
6 -630.04 (27) -659.42 (19)
7 -538.10 (21) -667.32 (19)
8 -532.72 (21) -670.31 (20)
9 -530.58 (21) -582.07 (16)
10 -641.84 (30) -582.08 (16)

Note. Grey boxes indicate the lowest TEFI for each EGA method.
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Table 2 shows the total entropy fit index per sample (training and validation), EGA technique and also for the
theoretical structure. The result is consistent across samples with EGA TMFG presenting the lowest TEFI and
the theoretical structure (20 factors) the highest. The network loadings of the variables and their description is
presented in a supplementary Table (see Additional Information at the end of the manuscript). The network loadings
are ordered by magnitude of the loadings and factor number. Focusing on the variables with the moderate or high
loadings per factor (i.e., network loadings equal to or higher than 0.25), the factors can be interpreted as follows.

Table 2. Total entropy fit index per structure in the training and validation samples

Data Structure TEFI Dimensions
Training EGA GGM -641.84 30
Training EGA TMFG -706.89 21
Training Theoretical -543.45 20
Validation EGA GGM -577.88 30
Validation EGA TMFG -627.11 21
Validation Theoretical -531.65 20

Factor one (cognition) is composed by items involving subtraction, date orientation (year, date, day of the week),
delayed recall, and number series. The second factor, close relationships, has items related to support and criticism
offered by close family members and friends as well as communication with them. Factor three (physical capacity)
is composed by items related to grip strength, eye intraocular pressure (measured via the puff test), and balance.
The fourth factor (negative affect) involved items related to negative emotions such as feeling nervous, sad, afraid,
frustrated, and scared (see Supplementary Table, link at the Additional Information section at the end of the
paper). Factor five (positive affect/perceived mastery), on the other hand, presents variables related to positive
emotions such as perceived mastery and relationship with the spouse/partner. Factor six combines variables related
to one’s ability to drive and biomarkers of genitourinary functioning. Factor seven is composed by items related to
cognition, especially from the number series test, while factor eight is a combination of items related to agreeableness,
extroversion and reliance on friends, which we labeled as a people-oriented trait. Factor nine, by its turn, is related
to depression and negative mood, factor ten is a factor related to cognition (but involving number series items with
moderate difficulty) and mobility. Factor eleven is composed by mobility indicators (walking test – time) and the
need of specialized equipment (bed and walk equipment) and factor twelve by variables related to the need of help
with instrumental activities of daily life.

Factor thirteen is composed by variables that indicate a creative and curious mind, with an active intellect that seeks
learning new things, while factor fourteen is composed by indicators of communication and interpersonal interactions
with family members, friends and children, and one item related to incontinence. Factor 15 contains biomarkers
of basic metabolic functioning (cholesterol and triglycerides), factor 16 contains biomarkers of liver functioning
(alanine, aspartate aminotransferase, ferritin, and alkaline phosphatase), and factor 17 is composed by biomarkers of
genitourinary functioning (chloride, sodium, bicarbonate). Factor 18 has items related to volunteering activities and
other activities (attending non-religious organizations and writing letters, stories or journal entries), while factor 19
has items related to low perceived control. Factor 20 contains items related to the (negative) quality of the close
environment (neighbourhood) and factor 21 has indicators of blood pressure.
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Figure 2. Network loadings ordered by magnitude within each EGA TMFG factor. Variable number represents
each item as a number that corresponds with the item labels and descriptions found in the Supplementary Table.
Effect sizes follow standard factor loading conventions: .40 (small), .55 (moderate), and .70 (large; Comrey, 2013).

Figure 2 depicts the magnitude of network loadings within each factor defined by EGA TMFG. The variable numbers
correspond to the items found in the Supplementary Table. Figure 3 shows the structure estimated using EGA
TMFG. Nodes (variables) are represented by colored circles, where each color represents a factor. The node size
represents the magnitude of the network loadings. Since plotting hundreds of items and 21 factors is a challenge
for interpretation, Figures 4 and 5 shows the same network structure as Figure 3, but each factor is now being
represented separately to improve interpretability.
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Figure 3. The EGA TMFG network structure colored coded by factors. The size of th node corresponds to the
magnitude of the network loading for each item on their dominant factor.
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Figure 4. EGA TMFG factor structure depicted with each factor’s (factors 1–12) location in the network. The
colored nodes represent items in the factor.
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Figure 5. EGA TMFG factor structure depicted with each factor’s (factors 13–21) location in the network. The
colored nodes represent items in the factor.
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The second-order structure of the 21 factors described above was estimated by rotating the network loadings using
the GeominQ rotation via the GPArotation package13. The resulting interfactor correlation matrix was analyzed
using EGA. Factor 15 (basic metabolic function) was estimated as a single-node cluster, and was removed from the
second-order analysis. Figure 5 shows the second-order structure with five factors. The first second-order factor
(red nodes) was composed of the following first-order factors: (1) Factor 1: Cognition, (2) Factor 10: Cognition
(moderately difficult items)/mobility, (3) Factor 11: Walking Limitations and Equipment usage, (4) Factor 12: Help
with instrumental activities of daily life, (5) Factor 14: Communication - interpersonal interactions, and (6) Factor 18:
Volunteering and other activities. Second-order factor two had the following first-order factors: (1) Factor 2: Close
Relations, (2) Factor 5: Positive Affect/Perceived Mastery, (3) Factor 6: Ability to Drive, Genitourinary Functioning,
(4) Factor 13: Intellect/curious, (5) Factor 17: Genitourinary function, and (6) Factor 19: Low Perceived Control.
The third second-order factor had the following composition: (1) Factor 3: Physical Capacity, (2) Factor 7: Cognition
(Number Series), (3) Factor 16: Liver function, and (4) Factor 21: Blood Pressure. The fourth second-order factor
was composed of factors 8 (People-oriented Trait) and 20 (Perceived Negative Environment Quality - neighbourhood),
while second-order factor five by the factors 4 (Negative Affect) and 9 (Depression/Negative Mood). The TEFI of
this five second-order factors—Physical and Mental Capacity, Social Mobility, Cardiovascular Capacity, Environment,
and Negative Affect, respectively—was -12.55, which was lower than the TEFI of a three-factor structure that
combined the first-order factors into functional ability, intrinsic capacity, and environment factors (TEFI = -5.26).

Figure 6

Discussion

The use of the International Classification of Functioning, Disability and Health compendium3 framework to
conceptualize broad domains of healthy aging was pioneered by Cesari et al.5 with the goal to pave the way for its
operationalization and measurement. Having an unified framework that can be used to inform the development
of new metrics and in the interpretation of the results from multi-domain aging research is an important step in
the field. As pointed out by Michel and Sadana4 in a recent review, each study of healthy aging assesses different
domains or combinations of domains with different variables in each domain, evidencing the lack of an integrative
approach that can be used as a reference criterion to the development of an integrative theoretical model.

The most integrative theoretical model of healthy aging was developed using the WHO’s definition of healthy
aging2,3: the process of developing and maintaining functional ability that enables well-being in older age, with
functional ability determined by the intrinsic capacity of the individual, the environments they inhabit, and their
interactions. Twenty-one general domains from the ICF compendium were identified as possible indicators of IC, FA
and EN by global experts2. In this theoretical model with 20 first-order factors, intrinsic capacity is composed by
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several domains of mental and body functioning, functional ability is comprised by broad domains related to basic
needs, the capacity to learn, grow and make decisions, mobility, the capacity to build and maintain relationships,
and to contribute to community/society. Finally, environment includes five broad domains related to products and
technology, natural and human-made environment, support and relationship, attitudes and service, systems and
policies.

The present research used data from the 2016 wave of the Health and Retirement Study (N = 16,327 adults and
elderly from the US), which was split into two random subsamples (training set with 60% of the observations and
validation set, with 40%). EGA was used to identify the structure of 280 variables from the HRS study in the
training set, and the fit of the empirical structure estimated using two different network techniques (GGM and
TMFG), which were compared to the fit of the theoretical structure with 20 broad dimensions from the ICF in
both the training and the validation samples. The total entropy fit index9 was used to optimize the number of
steps used in the Walktrap algorithm, an important part of the estimating factors using EGA technique, and to
compare the empirical and theoretical models. The result shows that the structure estimated using EGA TMFG
presented the lowest TEFI values in both training and validation samples, with the following 21 first-order factors:
cognition, close relationships, physical capacity, negative affect, positive affect and perceived mastery, ability to
drive and biomarkers of genitourinary functioning, cognition (number series), a people-oriented trait of personality,
depression and negative mood, cognition (number series items with moderate difficulty) and mobility, walking
capacity and the need of specialized equipment, need of help with instrumental activities of daily life, intellect
and curious mind, communication and interpersonal interactions with family members, friends and children, basic
metabolic functioning, liver functioning, genitourinary functioning, volunteering and other activities, low perceived
control, perceived negative quality of the close environment (neighbourhood) and blood pressure.

Next, the 21 empirical factors were analyzed using a method to estimate second-order factors from the EGA results
described earlier. A brief Monte-Carlo simulation was implemented to check the efficiency of the second-order
EGA technique in detecting the number high-order factors, quantified using normalized mutual information. The
results of the simulation showed that a very high efficacy for first-order factors (mean NMI close to 1) and for
second-order factors with sample sizes of 5,000 and 10,000. The application of the second-order EGA technique in
the 21 first-order factors revealed a structure composed by five factors (Figure 6). These five second-order factors
were largely congruent with the three proposed domains. Specifically, IC was related to second-order factors 1
(Physical and Mental Capacity) and 3 (Cardiovascular Capacity), FA was related to second-order factors 2 (Social
Mobility) and 5 (Negative Affect), and EN was related to second-order factor 4 (Environment).

It is interesting to note that each second-order factor shown in Figure 6 has a very clear central node, and the
direction of the connections (positive or negative regularized partial correlations) also reveals interesting patterns.
In the first second-order factor, cognition (moderately difficult items)/mobility is the most central node, being
positively linked to volunteering and other activities (factor 18) as well as to cognition (first-order factor one).
However, it is negatively linked to walking limitations and equipment usage (factor 11) and to the need for help
with instrumental activities of daily life (factor 12). Therefore, the greater people’s reasoning and mobility capacity,
the more they engage as volunteers and attend non-religious organizations. This is in line with previous studies
that identified that the variety and frequency of engagement in social activities coupled with the sense of social
connection, are related with less cognitive decline in old age.14–16 James, Wilson, Barnes, and Bennett17, for
example, examined the association of social activities (including volunteer work, participation in clubs, attendance
of religious services, and others) with cognitive decline in a longitudinal study with 1138 people and reported that
more social activity at baseline was associated with less cognitive decline in five cognitive domains (episodic memory,
semantic memory, working memory, perceptual speed and visuospatial ability). A one point increase in social activity
score was associated with a reduction of 0.034 units in the rate of cognitive decline per year17. Lövdén, Ghisletta,
and Lindenberger18 reported that the level of social engagement, including activities that are cognitively stimulating,
like attending lectures, predicted the rate of change of perceptual speed.

Engaging in social activities, such as doing volunteer work, is considered positive for older adults because being
useful to others instills a sense of being needed and valued19, but the impact on cognition depends on the type of
social activity20. Interventions focusing on sustained engagement in productive social activities, which involves
learning new things, can positively impact the cognitive capacity of older adults20. But the same doesn’t hold for
receptive social activities, such as participating in social clubs, which presents limited cognitive benefits20.

Our results show that cognitive capacity alone (first-order factor one) is not linked to volunteering and other social
activities, which may indicate that mobility can be a potential mediator between cognitive capacity and engagement
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in organized social activities. Mobility is, indeed, known to modulate the level of participation of older adults in
social activities, even in the absence of disability21. In their 21 year follow-up study with elderly Finish men and
women, Katja, Timo, Taina, and Tiina-Mari22 investigated a tangential but related question: whether mobility,
cognitive functioning, and depressive symptoms were mediators of the relationship between social activity and
mortality risk. The authors discovered that mobility could explain part of the association between social activity
and mortality, but cognitive functioning and depression were not. Instead, Katja et al.22 concluded that a good
cognitive capacity and less depressive symptoms were prerequisites for engaging in collective social activity.

At the same time, the negative relationship between cognition and mobility (factor 10) and need for help with daily
activities (factor 12) and to mobility and use of equipment (factor 11), may suggest that older adults with more
intrinsic physical and mobility limitations have more difficulty with tasks demanding the use of fluid intelligence.
This result is in line with a number of studies23–25 showing that mobility is related to cognitive performance in older
adults (for a recent meta-analysis see26).

Surprisingly, the need for help with instrumental activities of daily life was positively linked to positive affect and
perceived mastery (formed by items such as interested, enthusiastic, close with spouse/partner, spend enjoyable time
together with the spouse/partner, am an active person in carrying out the plans set for myself, active, usually find a
way to succeed, do anything I set my mind to and do things that I want to do), which was the most central variable
of the second-order factor two. Perceived mastery has been conceptualized as a psychological construct that might
be central to the process of selective optimization with compensation27, and operationalized in terms of “the extent
to which one regards life chances as being under one’s own control in contrast to being fatalistically ruled”28 or in
terms of self-efficacy, which refers to the belief that an individual has the skills or qualities necessary to control the
events that happen to his/her life29 and the belief that one has the means to achieve desired ends30. People with
high levels of mastery can modify the meaning and consequence of their experience by using cognitive strategies
and modifying their behaviors31, which may be an important mechanism for successful adaptation to challenges of
the life as well as an important predictor of the stability in activities of daily life among elders32. Based on the
positive relationship between need for help with IADL, positive affect/perceived mastery and close relationships,
we hypothesize that a sense of efficacy might be achieved when the individual, with the help of a social support,
successfully adapt to a new reality, even if with loss of independence/autonomy in daily life activities.

At the same time, our results show that positive affect and perceived mastery is negatively connected to low perceived
control (first-order factor 19), but positively associated with the other indicators of second-order factor two (i.e. close
relations, ability to drive and genitourinary functioning, as well as intellect/curious). This result is in line with
previous studies showing that low perceptions of control are strongly associated with negative emotions as sadness33,
and that control beliefs impact health and well-being34.

The most central variable in the third second-order factor is physical capacity (first-order factor 3), which is positively
connected to cognition, liver function and blood pressure. This result is also in line with previous studies showing
that physical capacity is positively related to cognitive performance in older adults35 and that higher levels of
physical activity are associated with lower cognitive decline in longitudinal studies36.

At the same time, liver functioning is known to positively impact people’s cardiovascular health and physical capacity,
with higher levels of alanine aminotransferase being previously associated with lower cardiovascular mortality37 and
with functional measures of physical capacity38. Another variable of liver functioning, aspartate aminotransferase
(PAST) is an indicator of muscle disorders39,40, so it makes sense to have factors three (physical capacity) and 16
(liver functioning) in the same second-order factor.

Another interesting result shows that the people-oriented trait (first-order factor 8—a mix of agreeableness, extraver-
sion, and reliance on friends) is negatively associated with factor 20 (perceived negative quality of the neighbourhood ).
Dunkel et al.41 found that higher scores in people-oriented traits (i.e. agreeableness and extraversion) are associated
with higher scores in perceived positive neighbourhood qualities (such as safety) and lower scores in negative qualities
such as neighbourhood inequality. The relationship between people-oriented traits and perceived neighbourhood
quality (the higher people’s person-oriented trait the lower their perceived negative qualities in neighbourhoods)
may be explained by the mechanism described by Robinson, Meier, and Vargas42. In their experimental study,
Robinson et al.42 showed that introverts that are faster in tasks of threat categorizations are more vulnerable
to experience negative affect compared to introverts that are slow in the task. At the same time, high levels of
extraversion inhibitthe negative affective consequences, being sufficient to “override implicit tendencies to regard the
world as somewhat threatening in nature”42. Together with our results, the findings described above point to the
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need to use more objective indicators/measures of neighbourhood quality in aging studies, since people with higher
people-oriented traits have a tendency to see their immediate environment via a more positive lens.

Finally, negative affect (factor 4) was identified in the same second-order factor as depression and negative mood
(factor 9), being not connected to the other factors. This might suggest that second-order factor 5 is a unique
psychopathological dimension. The lack of a second-order association between depressive symptoms and cognition
(factors 1, 7 and 10) in our study is not consistent with the literature findings, however43–45. Our findings may suggest
that cognition and the combination of depression, negative affect and negative mood are independent phenomena and
their co-existence might be explained by additional common causes underlying major depression and dementia, like
vascular risk factors46, cerebrovascular lesions47, and damage on the hypothalamic-pituitary-adrenal-stress axis48.

It is worth noting that the relationship between the first-order factors shown in Figure 6 may be better represented
by a network model instead of a factor model, since it is somehow different from the usual EGA results, where the
variables are densely connected within factors7,8. In any case, the results presented in the current paper can be used
for both interpretations, since in the EGA framework factors are clusters of nodes in a network.

The current paper compared the empirical structure of 280 variables from the 2016 wave of the HRS study estimated
using exploratory graph analysis with a theoretical structure based on 20 broad domains of intrinsic capacity,
functional ability and environment, identified in the ICF compendium. The results showed that a structure with
21 first-order factors (estimated using EGA TMFG) has the best fit to the data (i.e., lowest total entropy fit
value) for both the training and validation sample. A second-order exploratory graph analysis was applied in
the interfactor correlation matrix, computed using the rotated matrix of network loadings, and identified five
second-order factors. The five-factor structure presented a better fit than a three-factor structure (approximately)
representing intrinsic capacity, functional ability and environment. A close inspection of the network structure
generated by the second-order EGA revealed an interesting interplay between cognition, mobility, need for help
with daily activities, walking capacity, physical capacity, liver functioning, positive affect and perceived mastery, low
perceived control, and depression/negative mood. Combined, our results might help guide future research not only
by providing a framework for the analysis of the dimensionality structure of multi-domain aging research, but also by
generating questions that can be addressed in future research such as: (1) a possible mediation effect of mobility in
the relationship between cognition and engagement in structured social activities, (2) expanding our understanding
of the connection between liver functioning, cognition and physical capacity, (3) exploring the directionality of the
relation between positive affect and perceived mastery and the need for help with daily activities. The present paper
is the first investigating the structure of broad domains of intrinsic capacity, functional ability and environment.
Although our findings diverge from the theoretical structure based on 20 broad domains presented in the ICF,
future research could expand our analysis in two different ways: 1) by using the variables with the highest network
loadings per dimension to evaluate healthy aging, and check how a reduced sample of variables from the 21 first-order
factors is organized in terms of structure; 2) by using the ICF and the definition of intrinsic capacity, functional
ability and environment as an integrative theoretical model to develop new measures of healthy aging. Without a
clear integrative theoretical model guiding the development of instruments, the structural organization of variables
collected in aging studies will possibly lack the homogeneity that is necessary to find generalizable dimensions.

Methods

Data

The current study uses data from 16,327 adults and elderly from the US that participated in the 2016 wave of the Health
and Retirement Study (HRS). From all variables collected in 2016, two hundred eighty were selected as indicators
of intrinsic capacity, functional ability and environment. The indicators combine variables related to 20 domains:
cognition, psychological functioning, sensory capacity, cardiovascular capacity, respiratory capacity, immunological
system, genitourinary system, endocrine system, haematological system, metabolic system, neuromuscular system,
basic needs, capacity to learn and grow, mobility, capacity to build and maintain relationships, contribution to
society/community, as well as the products and technology of the environment, nature and human modifications of
the environment, support and relationships in the environment and attitudes of people. These 20 domains represent
the broad domains of the IC, FA, and EN theoretical model described in the introduction.
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Data Analysis

The goal of the structural analysis presented here is to estimate how the selected 280 HRS variables are organized
into broad domains (i.e., first-order factors), and if these domains correspond to the 20 broad domains pointed above
(i.e., the broad domains of the IC, FA, EN theoretical model). The EGA technique was used via EGAnet package49
from R50,and three structures were compared using the TEFI fit index (also implemented in the EGAnet package):
(1) the structure obtained using EGA with the GGM network method, (2) the structure obtained using EGA with
the TMFG estimation, and (3) the theoretical structure with 20 domains pointed above. The correlation matrix was
estimated using the available pairwise information, due to missingness.

The EGA framework was used as follows. First, the data was split into two random datasets: a training set, with
60% of the observations (N = 9,796), and a validation set with the remaining 40% observations (N = 6,531). Then,
EGA was applied in the training set and the optimal number of steps of the walktrap algorithm was selected using
the TEFI index, varying the number of steps from 3 to 10, for each network model (i.e., GGM and TMFG). The
optimal structure for each network model was compared to the theoretical structure (with 20 domains) also using
the TEFI index. The fit of the empirical (i.e., estimated using EGA with GGM and with TMFG) and theoretical
structure were computed using the validation set. While the training set is used for estimating the structural
organization of the variables via EGA (with the optimization process for the Walktrap algorithm described before),
the validation set is used to check the best fitting structure in an independent sample.

Next, the best fitting structure identified in the steps described above was used to compute the network loadings.
The goal to compute network loadings here is twofold. First, it enables the identification of the best items per
dimension and, second it can be used to estimate the second-order dimensions (see the description of the second-order
EGA technique in the next section). Finally, the network loadings were rotated using GeominQ via the GPArotation
package13, and the resulting interfactor correlation matrix was analyzed using EGA to estimate the second-order
structure.

Exploratory Graph Analysis

Network models in psychology can be traced back to the work of Guttman51, who proposed a method termed
image structure analysis, which is essentially the basis of contemporary node-wise regression network models52. The
use of network models in psychology and health, however, have only gained momentum after the publication of
the mutualism model of intelligence53. In this mutualism model, the positive manifold of intelligence tests were
proposed to be a consequence of a network of reciprocal causal relations between cognitive abilities instead of the
product of a single general factor (the g factor). The same conceptual framework was used by Borsboom54 in the
area of psychopathology. Psychopathological disorders were proposed as a network of causal relations between
symptoms54 that could be used not only to re-think the nature of psychopathology but also as an approach to
interpret comorbidity55, reproducing empirical population statistics of mental disorders56. From the mutualism
model of intelligence and the dissemination of network methods in psychopathology57, these types of models have also
been used in clinical psychology,58 cognitive psychology and individual differences59,60, aging8,9, social psychology61,
and many other areas62.

The network perspective of psychological constructs originated a new subfield of quantitative psychology called
network psychometrics.62,63 From this perspective, network models are used to estimate the relationship between
multiple variables (typically using the Gaussian graphical model, GGM11), where nodes (e.g., test items) are
connected by edges (or links), which indicate the strength of the association between the variables.64 In the past few
years, evidence has emerged showing that network models and latent variable models are closely related and can
be mathematically equated in some circumstances62,65,66, and that it could also be used as a way to explore the
dimensionality structure of measurement instruments (e.g., scales, questionnaires, tests)7,59,67.

Golino and Epskamp7 showed that the GGM model combined with a clustering algorithm for weighted networks
(e.g., Walktrap68) could accurately recover the number of simulated factors, presenting a higher accuracy than
traditional factor analytic based methods. Golino and Epskamp7 termed this new method exploratory graph analysis
(EGA). More recently, the accuracy of EGA was investigated in a simulation study that expanded the work of
Golino and Epskamp7 by comparing the EGA results with different types of traditional factor-analytical methods
(including two types of parallel analysis)8. The results suggest that EGA (using the GGM network model) achieves
the highest overall accuracy (87.91%) in estimating the number of simulated factors, followed by the traditional
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parallel analysis with principal components of Horn69 (83.01%), and parallel analysis using principal axis factoring
proposed by Humphreys and Ilgen70 (81.88%).

The EGA technique estimates the number of factors by combining the GGM model11 with the Walktrap clustering
algorithm68, a common approach for estimating clusters in weighted networks. The algorithm iteratively identifies
how each node is connected to neighboring nodes, using them to determine which cluster each node belongs to. First,
the technique starts by estimating a network. The current approach is to estimate a GGM using the K (kappa)
matrix or the inverse of the variance-covariance matrix, (Σ), in which the elements kij (row i, column j of K) can
be standardized to yield the partial correlation between two variables yi and yj , given all other variables. If every
nonzero element of K is a freely estimated parameter, the resulting matrix is the GGM—that is, a sparse model
of Σ.64 There are many methods to control the level of sparsity of the GGM, but the most common approach in
network psychometrics is to use the graphical LASSO (GLASSO71) technique, and to tune its hyperparameter, λ,
in a way to minimize the extended Bayesian information criterion (EBIC72). This approach has been shown to
accurately retrieve the true network structure in simulation studies64,73.

Recently, a new approach to estimate psychometric networks, the Triangulated Maximally Filtered Graph (TMFG),
was proposed8,12,74. The TMFG method uses zero-order correlations (as opposed to the GGM network model used
in network psychometrics that is estimated as regularized partial correlations), and applies a structural constraint
on the network, which restrains the network to retain a certain number of edges (3n-6, where n is the number of
nodes)74. The network is comprised of triangles (3 connected nodes) and tetrahedrons (4 connected nodes), and can
be associated with the inverse covariance matrix (yielding a GGM75). The network estimation using the TMFG
approach starts by forming a tetrahedron of the four nodes that have the highest sum of correlations to all other
nodes (i.e., strength centrality). In the second step the algorithm iteratively identifies and incorporates the node
that maximizes its strength centrality to three of the nodes already included in the network.

Figure 7 shows a schematic simplification of the EGA approach. Data is collected and imported to R. The EGAnet
package49 is used to implement the EGA analysis. As pointed before, two network estimation techniques can be used:
the GGM and TMFG. Both will generate networks in which the nodes represent the variables and the edges represent
the association between variables. When the GGM model is used, the edges are regularized partial correlations.
The resulting network (for both models) is plot as a two-dimensional image in which nodes with higher associations
are placed closer to each other using the Fruchterman-Reingold algorithm76. Finally, the factors are automatically
identified using the Walktrap algorithm. A detailed description of EGA (using GGM or TMFG) was provided by
Golino et al.8, including an explanation of how the technique can be used to identify unidimensional structures.
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Figure 7. Exploratory graph analysis

The Walktrap algorithm plays an important role in EGA, and works as follows. First, the sum of a node’s connection
to its neighbors (node strength) is calculated using the square matrix of edge weights (e.g., partial correlations). A
hyperparameter, number of steps, is set to move from one node to another randomly and uniformly using a transition
matrix. The number of steps is arbitrary and defined by the user, however, simulation studies68 and applied research
have used four steps as the default value8. To determine the communities that the nodes belong to, the transition
matrix is used to compute a distance metric (r) that measures the structural similarity between nodes68. This
distance metric can be generalized to the distance between nodes and communities by beginning the random walk at
a random node in a community, and then is further generalized to the distance between two communities.

Starting with each node as a cluster (i.e., n clusters), the Walktrap algorithm computes the distances, r, between all
adjacent nodes, and iteratively chooses two clusters. These two clusters are then merged into a new cluster, updating
the distances between the node(s) and cluster(s) with each merge (in each k = n−1 steps). Clusters are only merged
if they are adjacent to one another (i.e., an edge between them), using a methods based on Ward’s agglomerative
clustering approach (Ward77), and that depend on the estimation of the squared distances between each node and
its community (σk), for each k steps of the algorithm. Computing σk is computationally expensive, so Pons and
Latapy68 adopted an efficient approximation that only depends on the nodes and the communities rather than the k
steps. The approximation seeks to minimize the variation of σ that would be induced if two clusters are merged into
a new cluster. The resulting values can be stored in a balanced tree, and the best number of clusters is defined as
the partition that maximizes an index termed modularity78.

As pointed out earlier, the number of steps used in the walktrap algorithm is arbitrary, generally being set to four8,79.
Recently, a new fit metric for dimensionality analysis based on entropy was developed by Golino and colleagues9.
This metric can be used to select the optimal number of steps in the walktrap algorithm that will lead to a best
fitting dimensionality structure in the EGA estimation process.

Optmizing Model Fit using the Total Entropy Fit Index

The EGA technique presents several advantages over more traditional methods8. First, unlike exploratory factor
analysis (EFA) methods, EGA does not require a rotation method to interpret the estimated first-order factors.
Although rotations are rarely discussed in the validation literature, they have significant consequences for validation
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(e.g., estimation of factor loadings80). Second, EGA automatically places items into factors without the researcher’s
direction, which contrasts with exploratory factor analysis where researchers must decipher a factor loading matrix.
Third, the representation of the network allows inferences into which dimensions are more central and how items
relate within and between dimensions. Thus, EGA can be used as an evaluation tool for whether the items forming
into the dimensions they intended and supports a fuzzy interpretation of the dimensions where the boundaries
between items and dimensions are blurred. In contrast, factor analysis (e.g., confirmatory factor analysis; CFA)
models usually depict the relations across the same level (i.e., dimensions with dimensions).

After applying the EGA method in a given dataset using both the GGM and the TMFG network method, the best
fitting dimensionality structure (i.e., latent factors) can be verified using the total entropy fit index (TEFI9). The
TEFI fit index was developed as an alternative to traditional fit measures used in factor analysis and structural
equation modeling, showing a higher accuracy in correctly identifying the number of simulated factors than the
comparative fit index (CFI), the root mean square error of approximation (RMSEA), and other indices used in
structural equation modeling.9 Golino et al.9 showed that the TEFI index presented a general accuracy of 92% in
identifying the number of latent dimensions in a Monte-Carlo simulation, CFI and RMSEA presented an accuracy
of 35% and 14% when used with the traditional cut-off criteria (respectively), and an accuracy of 74% and 78%
when used as relative measures of fit (respectively).

The TEFI fit index is based on the Von Neumann entropy81—a measure developed to to quantify the amount of
disorder in a system as well as the entanglement between two subsystems82. Golino et al.9 showed that the Von
Neumann entropy can be estimated in correlation matrices by converting the correlation matrix into a density-like
matrix ρ, using the number of variables as a scaling factor that will make the trace of the matrix equal to one.83A
The density-like matrix (i.e. scaled correlation matrix) ρ will, then, have the following properties: (1) it is symmetric,
(2) positive semi-definite, and (3) has trace equal to one.

Given a density matrix ρ with eigenvalues λ1,λ2, ...,λm ≥ 0, Von Neumann entropy can be estimated as follows:

S(ρ) =−tr(ρ× log(ρ)), (1)

The TEFI index is calculated as:

TEFIV N =
[∑NF

i=1S(ρi)
NF

−S(ρ)
]

+

S(ρ)−
NF∑
i=1
S(ρi)

×√
NF

 . (2)

where NF is the number of factors, S(ρi) is a Von Neumann entropy of each factor, and S(ρ) is the total entropy of
the (density-like) matrix ρ. It should be noted that the TEFI fit index estimates the Von Neumann entropy in a
slightly different way, rather than calculating the logarithm of the matrix, the logarithm of the each element in the
matrix is obtained, resulting in an entropy-like metric.

The TEFI index is a relative measure of fit that can be used to compare two or more dimensionality structures. For
example, the structure estimated via EGA using the GGM network estimation can be compared to the structure
estimated using the TMFG network method (hereafter termed EGA GGM and EGA TMFG, respectively). The
structure presenting the lowest TEFI value fits the data best9. It can also be used to a way to select the optimal
number of steps in the Walktrap algorithm in the EGA estimation process. To optimize model fit, EGA is estimated
using the GGM or the TMFG method, and the number of steps is set as a vector of values (e.g., from 3 to 10).
The fit of the resulting structure can be checked using the TEFI index, and the optimal number of steps is the one
leading to the lowest TEFI value.

Network Loadings

A key component for understanding the items that comprise these dimensions is to quantify their relations within
and between dimensions of the network. In traditional methods, this is done using factor loadings. For psychometric
networks, there are different measures called centrality, which are used to quantify a node’s relative position in the
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network. The most commonly used centrality measure in the literature is node strength, which is the sum of a node’s
connections to other nodes.

A recent simulation study demonstrated that node strength was directly related to and redundant with CFA factor
loadings84. A notable finding from this study was that node strength was a blend of connections within and between
dimensions, suggesting that each node’s strength should be assessed within each dimension rather than as a singular
measure. When standardizing this measure, it becomes roughly equivalent to an EFA factor loading matrix10, which
is the most commonly used metric for item assessment in the psychometric literature85,86. Christensen and Golino10
formally expressed how this can be derived.

We start with node strength which can be defined as:

Si =
n∑

j=1
|wij |,

Lif =
F∑

j∈f

|wij |,

where |wij | is the absolute weight (e.g., partial correlation) between node i and j, Si is the sum of the edge weights
connected to node i across all nodes (n; i.e., node strength for node i), Lif is the sum of edge weights in factor f
that are connected to node i (i.e., node i’s loading for factor f), and F is the number of factors (in the network).
This measure can be standardized using the following formula:

zLif
= Lif√∑

L.f

,

where the denominator is equal to the square root of the sum of all the weights for nodes in factor f . It’s important
emphasize that these values are represented by the type of correlation used in the network—that is, regularized
partial correlations (using GGM) and zero-order correlations (using TMFG).

Network loadings can substantively be interpreted as the node’s contribution to the coherence of each dimension in
the network87. In contrast, factor loadings are substantively interpreted as how well an item represents or measures
the latent factor. These interpretations, however, are statistically and epistemologically connected: the more one
node contributes to a dimension’s coherence, the more the item represents the underlying dimension. One key
difference between an EFA factor loading matrix and a network loading matrix is that the network loading matrix
will have zeros because some items are conditionally independent from (or not connected to) other nodes10. Since
factor loadings and network loadings have different scales, their magnitudes are also interpreted differently. For factor
loadings, the typical guidelines corresponding to small, moderate, and large are .40, .55, and .70, respectively88.
Christensen and Golino10 identified effect size guidelines for (partial correlation) network loadings that correspond
with traditional factor loading guidelines: small (0.15), moderate (0.25), and large (0.35).

A strategy to estimate second order dimensions using EGA

Despite the advantages of EGA pointed before, the usual application of this technique is limited to the estimation of
first-order factors. However, first-order factors may present substantial correlations that might be accounted for by
hypothesized higher-order dimensions, making second-order models potentially applicable89. Studies using EGA
focused solely on first-order factors for two main reasons. First, there is a strong body of evidences showing that
network psychometric methods can be used as tools for dimensionality assessment and reduction when used directly
in observed data, being suited for uncovering first-order factors7–9. Second, only recently has evidence emerged
showing that network centrality metrics are directly related to and redundant with CFA factor loadings,84 opening
space to the develop network loadings (as shown in the previous section).
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Considering that network loadings are statistically and epistemologically connected to factor loadings, they can be
used to estimate higher-order factors in a two-step approach. First, the dimensionality structure of the observed
variables is estimated using EGA. Then, the standardized network loadings are computed using the equations
presented in the previous section. Once the matrix of network loadings is generated, it can be rotated using an
oblique method to obtain a rotated network loadings matrix and the interfactor correlation matrix. Finally, EGA
can be applied to the matrix of interfactor correlation to estimate second-order dimensions.

To provide a computational proof-of-concept to the two-step approach described above, a brief Monte Carlo simulation
was implemented in this section. Two between-subject data factors were systematically manipulated: sample size
(1000, 5000, and 10000) and proportion of missing data (2.5%, 5% and 10%) following a missing-at-random mechanism.
The following data factors were held constant: number of second-order factors (2), number of first-order factors (6),
number of variables in each first-order factors (12), factor loadings (0.8 for both first and second-order factors) and
number of response categories (4).

The decision to simulate data with very high factor loadings and a significant number of variables per first-order
factors was to investigate how well EGA performs in the estimation of second-order factors in optimal conditions.
The distribution of the variables per topic can be checked using normalized mutual information (NMI90). NMI
is a metric used to compare the similarity between two vectors (of discrete variables) and assigns a value of zero
where the two vectors are totally dissimilar, and a value of one where they are identical in an information theoretic
perspective. The two vectors used to compute NMI are the vector of the assigned variables per factor (ground truth)
and the vector containing the estimated variables per factor.

Sample data matrices of variables were generated according to a hierarchical factor model procedure that works as
follows. First, the correlation matrix of the first-order factors was computed:

Φ = ΓΓ′, (3)

where Φ is the correlation matrix of the first-order factors (interfactor correlations) and gamma (Γ) is a k×f matrix
of the loadings of k first-order factors on f second-order factors.

Then, the reproduced population correlation matrix (RR) was obtained

RR = ΛΦΛ′, (4)

where lambda (Λ) is a l× r factor loading matrix for l variables and r factors. The population correlation matrix
RP was obtained raising the matrix to full rank (i.e. inserting unities in the diagonal of RR). Next, a Cholesky
decomposition of RP was computed. If RP was not semi-positive definite the matrix was replaced and a new RP
matrix was computed following the same procedure. Subsequently, the sample data matrix of continuous variables
was computed as:

X = ZU, (5)

where Z is a matrix of random standard normal deviates with rows equal to the sample size and columns equal to
the number of variables.

Then, 10 of the 12 resulting continuous variables were categorized by applying a set of thresholds following Garrido,
Abad, and Ponsoda8,91. By following this procedure, we transformed most of the items into polytomous items with
four response categories, while leaving two items as continuous, generating a mixed item-type data matrix. In the
last step, missing values were generated (i.e., the complete dataset was ‘amputated’) for half of the items, following
a missing-at-random mechanism using the mice package92. The proportion of missingness were set as 0.1, 0.05 and
0.025, leading to 20%, 10% and 5% of missing data. Since only half of the items were used to generate the missing
data pattern, the final proportion of missingness was 10%, 5% and 2.5%.
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Following previous simulation studies8,91 the generation of the main loadings was implemented drawing random
values from a uniform distribution that has a range of ±.10 from the specified value. Therefore, since the specified
value of the loadings was 0.8, the actual values of the loadings can vary between 0.70 and 0.90. For each of condition
tested in the simulation, multiple sample data matrices were generated and 450 were randomly selected to compute
the mean normalized mutual information and it’s 95% confidence interval. This strategy was necessary to deal with
non-convergence of the estimates (EGA with GGM presented a convergence rate of 85.86% and EGA with TMFG a
convergence rate of 63.15%).

Exploratory graph analysis was applied using the EGAnet package49, and the network construction methods used
were GGM and TMFG. Figure 8 shows the normalized mutual information for each condition tested.

Figure 8. Normalized mutual information for first-order and second-order dimensionality solutions provided by
EGA GGM and EGA TMFG

As Figure 8 shows, EGA using both the GGM and the TMFG network methods presented a very high mean
normalized mutual information for the first-order factors (0.98 and 1, respectively). The mean NMI for the second-
order factors were not as high as the first-order factors (EGA GGM = 0.84, EGA TMFG = 0.72), except when the
sample size was very large. When the sample size was 5,000, EGA GGM presented a mean NMI of 0.91 (95% C.I. =
0.90,0.92) and EGA TMFG presented a mean NMI of 0.78 (95% C.I. = 0.76,0.81). For a sample size of 10,000, EGA
GGM presented a mean NMI of 0.92 (95% C.I. = 0.91,0.93) and EGA TMFG presented a mean NMI of 0.88 (95%
C.I. = 0.86,0.90).
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