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ABSTRACT
The accurate identification of the content and number of latent factors underlying multivari-
ate data is an important endeavor in many areas of Psychology and related fields. Recently,
a new dimensionality assessment technique based on network psychometrics was proposed
(Exploratory Graph Analysis, EGA), but a measure to check the fit of the dimensionality
structure to the data estimated via EGA is still lacking. Although traditional factor-analytic fit
measures are widespread, recent research has identified limitations for their effectiveness in
categorical variables. Here, we propose three new fit measures (termed entropy fit indices)
that combines information theory, quantum information theory and structural analysis:
Entropy Fit Index (EFI), EFI with Von Neumman Entropy (EFI.vn) and Total EFI.vn (TEFI.vn).
The first can be estimated in complete datasets using Shannon entropy, while EFI.vn and
TEFI.vn can be estimated in correlation matrices using quantum information metrics. We
show, through several simulations, that TEFI.vn, EFI.vn and EFI are as accurate or more
accurate than traditional fit measures when identifying the number of simulated latent fac-
tors. However, in conditions where more factors are extracted than the number of factors
simulated, only TEFI.vn presents a very high accuracy. In addition, we provide an applied
example that demonstrates how the new fit measures can be used with a real-world data-
set, using exploratory graph analysis.

KEYWORDS
Fit measures; dimensionality
analysis; information theory;
network psychometrics;
exploratory graph analysis

Introduction

Estimating the dimensionality or the number of
underlying dimensions (or factors) in multivariate
datasets is an important step in psychology and
related areas. In the health and social sciences areas,
assessing the dimensionality of scales, tests, and ques-
tionnaires is one of the first steps on the path to
understanding multivariate data. Parallel, exploratory
factor, and principal component analysis (e.g., eigen-
values and scree plots) are the most common techni-
ques implemented in commercial software and among
the most common strategies used to identify the
dimensionality of the data across research areas.
Despite their long history and widespread application,
simulation studies have consistently shown that trad-
itional factor-analytic techniques present important
limitations (Crawford et al., 2010; Garrido et al., 2013;

Hayton et al., 2004; Keith et al., 2016; Ruscio &
Roche, 2012).

Recently, a new dimensionality assessment tech-
nique termed Exploratory Graph Analysis (EGA:
Golino & Epskamp, 2017) was proposed. EGA has
shown a number of advantages when compared to
traditional factor-analytic techniques (Golino &
Demetriou, 2017; Golino & Epskamp, 2017). The
technique estimates the number of underlying dimen-
sions by first modeling multivariate data as a network
of partial correlations (using the Gaussian graphical
model, GGM; Lauritzen, 1996) or zero-order correla-
tions (using the triangulated maximally filtered graph
approach, TMFG; Massara et al., 2016). Then, the
technique applies a community detection algorithm
for weighted networks (i.e., Walktrap; Pons & Latapy,
2005), which identifies the number of dimensions in
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the network using a random walk process. Not only
does EGA present higher accuracy than many trad-
itional methods (i.e., percentage of correct estimates
across different simulated conditions), but it also pro-
duces a visual guide (network plot) that indicates the
number of dimensions to retain, showing which items
cluster together and their level of association, all with-
out the need of any specification from researchers
(e.g., type of rotation, number of factors; Golino et al.,
2020). Although useful, EGA lacks a fit index to com-
pare different dimensionality structures between EGA
methods (GGM and TMFG), EGA and factor-analytic
methods, and EGA and theoretical structures.
Moreover, community detection algorithms often have
parameters (e.g., steps in the Walktrap algorithm) that
adjust the number of dimensions that the algorithm
will find. Therefore, a fit measure that can be used to
automatically adjust these parameters for optimal per-
formance could greatly improve EGA’s precision.

Applied researchers and methodologists use fit
indices to assess the factor solutions of their data (or
instruments), mainly because they provide useful diag-
nostic information, but also because they enable the
comparison of different dimensionality structures (i.e.,
number of factors and distribution of items per fac-
tors). Despite the usefulness of fit indices used in fac-
tor analysis to estimate the number of underlying
dimensions, two main limitations can be found in the
literature. First, there are only a few simulation studies
investigating the accuracy of the traditional fit indices
(such as Comparative Fit Index and Root Mean
Square Error of Approximation or CFI and RMSEA,
respectively) to estimate the correct number of factors
(Barendse et al., 2015; Clark & Bowles, 2018; Frazier
& Youngstrom, 2007; Garrido et al., 2016; Yang &
Xia, 2015). Second, they produce poor dimensionality
estimates for skewed categorical variables (Clark &
Bowles, 2018; Garrido et al., 2016). Clearly, there is a
need for fit indices that mitigate these limitations.

The goals of the paper are twofold. First, we intro-
duce a new family of fit indices termed Entropy Fit
Indices (EFIs) will be presented: an index that is com-
puted using the raw data (Entropy Fit Index; EFI), and
two indices that are computed using the correlation
matrix (Entropy Fit Index with Von Neumann Entropy
and Total Entropy Fit Index; vnEFI and TEFI, respect-
ively). These new fit indices can be used to assess the
degree of disorder (or uncertainty, using information
theory terms) of a set of random variables for struc-
tures with different skew of variables, number of fac-
tors, different distribution of items in factors, and
placement of items in each factor. Lower values of the

EFIs indicate lower disorder (or uncertainty) of a sys-
tem of variables, indicating a higher probability that a
given structure represents the best organization of
these variables. Second, we use a Monte Carlo simula-
tion method to compare the EFIs to some of the most
commonly used fit indices in factor analysis: CFI,
RMSEA, Tucker-Lewis Index (TLI), and Standardized
Root Mean Square Residual (SRMR).

This article is organized as follows: The first section
briefly introduces several traditional factor-analytic fit
indices and examines their usefulness in estimating
the number of underlying dimensions in multivariate
data. The second section briefly reviews EGA, and
summarizes the main findings of previous simulation
studies. The third section briefly introduces the con-
cept of entropy, its properties and estimation meth-
ods, and the new EFIs. The fourth section presents a
Monte Carlo simulation, where the number of factors,
variables per factor, interfactor correlations, factor
loadings, and skewness of the variables are systematic-
ally controlled. The fit indices will be computed when
a given structure reflects: (1) exactly the simulated fac-
tor structure, (2) the correct number of factors, but
with a random placement of items per factor, and (3)
an incorrect number of factors (underfactoring or
overfactoring). The fifth section uses an empirical
example, from a large scale study on aging, to demon-
strate the use of EFI. Finally, the last section presents
a discussion of the results, limitations of the current
study, and future directions.

Fit indices used in dimensionality assessment

Fit indices derived from factor analysis models have
been proposed as tools to estimate latent dimensions
in multivariate data (Santos et al., 2018; Schermelleh-
Engel et al., 2003; Ventimiglia & MacDonald, 2012).
These fit indices include (among others): CFI
(Bentler, 1990), TLI (Tucker & Lewis, 1973), RMSEA
(Steiger, 1980), and SRMR (Joreskog & Sorbom,
1981). The first three indices are based on the non-
centrality parameter (kM) of the specified model,
which is computed as v2M � dfM , where v2M is the chi-
square statistic that tests the equivalence of the popu-
lation covariance matrix of observed variables and the
model-implied covariance matrix, and dfM is the
degrees of freedom of the specified model. The last fit
index, SRMR, is based on the average difference
between observed and model-implied covariance
matrices. The CFI and TLI indices are considered
incremental fit indices because they evaluate the
degree to which the specified model is superior to a
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baseline model—usually a null model where the
observed variables are proposed to be uncorrelated—
in reproducing the observed covariances. In contrast,
the RMSEA and SRMR are considered absolute fit
indices because they offer a measure of overall fit that
only takes into account the fit of the specified model.
A key advantage of the RMSEA index is that, because
it follows a known v2 distribution asymptotically, con-
fidence intervals can be estimated around the point
estimate, allowing for formal hypothesis tests to be
conducted by jointly considering the point estimate
and its associated confidence interval (Chen et al.,
2008). The formulas for the aforementioned fit indices
are shown below in Equations 1 to 4:

CFI ¼ 1� maxðkM, 0Þ
maxðkN , kMÞ , (1)

TLI ¼ 1� kM
kN

� �
dfN
dfM

� �
, (2)

RMSEA ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kM

dfMðN � 1Þ

s
, 0

0
@

1
A, (3)

SRMR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1

Pi
j¼1

sijffiffiffi
sii

p ffiffiffi
sjj

p � r̂ ijffiffiffiffi
r̂ ii

p ffiffiffiffi
r̂ jj

p
� �2

pðpþ1Þ
2

vuuuut , (4)

where kN and dfN are the noncentrality parameter and
degrees of freedom of the baseline model, N is the
sample size, sij is the observed covariance, r̂ij is the
model-implied covariance, sii and sjj are the observed
standard deviations, r̂ii and r̂jj are the model-implied
standard deviations, and p is the number of
observed variables.

SRMR (Equation 4) and the fit index for categorical
data termed weighted root mean square residual
(WRMR) are residual based fit indices (DiStefano
et al., 2018). The WRMR fit index was originally pro-
posed by Muth�en and Muth�en (1998) and first exam-
ined by Yu (2002). Among several fit indices
evaluated (e.g., CFI, TLI, RMSEA), WRMR produced
results that were most similar to the SRMR index (Yu,
2002). Initially the WRMR was recommended for
models composed of variables that have widely dispar-
ate variances and/or are on different scales (Yu, 2002).

There are several reasons why we opted to use the
SRMR over WRMR for the present study. First, the
index has been regarded as “experimental” by its crea-
tors (Muth�en & Muth�en, 1998–2012). Second, in con-
trast of other well-established fit indices it has only
been evaluated in a couple of simulation studies
(DiStefano et al., 2018). Third, and most importantly,

based on the results of DiStefano et al. (2018) the cre-
ators of the index decided to remove it from the out-
put of the MPlus program in favor of the SRMR
index (Asparouhov & Muth�en, 2018). The authors
state “In Mplus 8.1 for the WLS family of estimators
this SRMR fit index replaces the WRMR fit index
which has been shown to perform poorly for situa-
tions with extremely large sample sizes, see DiStefano
et al. (2018)” (Asparouhov & Muth�en, 2018, p. 11).
Finally, all the simulated items were on the
same scale.

When using fit indices to estimate latent dimen-
sionality under the framework of unrestricted
(exploratory) factor models, the common rationale is
that factors should be sequentially added to a model
until an acceptable level of fit has been achieved. First,
a one-factor model would be fitted to the data and its
level of fit would be compared against pre-specified
cutoff values for the fit indices. If the fit was deemed
acceptable, the one-factor model would be retained; if
not, an unrestricted two-factor model would be esti-
mated and the process would be repeated, until an
acceptable level of fit was achieved. Applied research-
ers that have employed this approach (e.g., Campbell-
Sills et al., 2004; Sanne et al., 2009) have generally
relied on the typical cutoff values that have been pro-
posed for these indices in the literature, such as .90 or
.95 for CFI and TLI, and .05 or .08 for RMSEA and
SRMR (good and acceptable fit, respectively; Browne
& Cudeck, 1992; Chen et al., 2008; Hu &
Bentler, 1999).

Despite the appeal of using fit indices to estimate
latent dimensionality, recent simulation studies have
shown that they are not the best tools for this
endeavor. Garrido et al. (2016) examined the perform-
ance of these four fit indices across a large number of
conditions of continuous and categorical variables and
using a wide range of cutoff values for each index.
They found that the CFI and TLI indices were the
most accurate, followed at a step below by RMSEA,
and finally by SRMR, which produced very poor esti-
mates across all the cutoff values in its relevant range
of functioning. Even the best performing fit indices
(CFI and TLI) were more variable and less accurate
than parallel analysis—one of the most widely recom-
mended methods in the dimensionality literature
(Garrido et al., 2016; Horn, 1965). Subsequent studies
by Clark and Bowles (2018) and Beierl et al. (2018)
have corroborated these findings, showing that none
of the conventional cutoff values previously cited
appeared to perform well enough to be recommended.
Similar to Garrido et al. (2016), they found that the
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RMSEA index combined with the typical cutoff value
of 0.05 was insensitive to latent misspecification, fre-
quently accepting models with fewer major factors
than those in the population. Similarly, while the CFI
and TLI indices performed more reliably using a 0.95
cutoff value, their accuracy was contingent on the size
of the factor loadings, factor correlations, and number
of items (Beierl et al., 2018; Clark & Bowles, 2018).
Again, the SRMR index performed very poorly, gener-
ally accepting underfactored models when using a cut-
off value of 0.08.

In general, research studies evaluating the use of fit
indices for dimensionality assessment have encoun-
tered similar problems to those found in the general
literature that has assessed the usefulness of fit indices
for latent variable modeling. More specifically, it has
been shown that the values of the fit indices are
affected by incidental parameters not related to the
size of the misfit, such as the size of the factor load-
ings, the number of response categories, and the sam-
ple size (Chen et al., 2008; Heene et al., 2011; Hu &
Bentler, 1999; McNeish et al., 2018; Savalei, 2012; Xia
& Yang, 2018). Because of this, there are no “golden
rules” for fit indices as no single cutoff value can be
expected to perform well across the diverse type of
data structures encountered in practice (Marsh et al.,
2004). In a recent study, Clark and Bowles (2018)
concluded that, “the common fit statistics cut-offs
employed in the literature are at best imperfect tools
for guiding decisions regarding dimensionality when
interpreting an item factor analysis” (Clark & Bowles,
2018, p. 555). Clark and Bowles (2018) suggest that fit
indices should be used in conjunction with other
methods for assessing dimensionality.

Exploratory graph analysis: an overview

A recently developed dimensionality assessment tech-
nique, Exploratory Graph Analysis (Golino &
Epskamp, 2017), is part of a relatively new field of
quantitative methods termed network psychometrics
(Epskamp, 2018; Epskamp et al., 2017). EGA estimates
the dimensionality structure of multivariate data by
combining network analysis with a community detec-
tion algorithm (i.e., a method to detect dimensions in
networks), and has shown to be a promising dimen-
sionality assessment technique in simulation studies
(Golino et al., 2020; Golino & Epskamp, 2017).
Currently, however, there is no fit index that can dir-
ectly determine the adequacy of the dimensional
structures estimated via EGA (without having to use
additional models such as CFA; Golino & Demetriou,

2017). This section briefly introduces EGA, which can
be used as one of the steps for assessing dimensional-
ity, complementing the suggestion of Clark and
Bowles (2018).

EGA is a dimensionality technique from the net-
work psychometrics perspective. A network is
depicted by nodes (circles) representing variables and
edges (lines) representing the associations between
variables. The general notion behind the EGA algo-
rithm is to estimate a network and apply the
Walktrap community detection algorithm (Pons &
Latapy, 2005), which is a common approach for iden-
tifying communities (densely connected sets of nodes)
in weighted networks. These communities are shown
to be statistically equivalent to latent factors of factor
models (Golino et al., 2020; Golino & Epskamp,
2017). Below we provide a more thorough explanation
of this algorithm. Readers interested in a more in-
depth description of EGA can find additional details
in the simulation study and tutorial published by
Golino et al. (2020).

The first network estimation method for EGA algo-
rithm is the Gaussian graphical model (GGM;
Lauritzen, 1996), which estimates multivariate joint
probability distribution of random variables—that is,
the probability for the values of each pair of variables
to be within the range of values for those variables.
This probability distribution is represented by the
inverse of the covariance matrix (often referred to as
the precision matrix), whose off-diagonal elements
represent the conditional dependence between two
variables given all other variables. The current
approach used in network psychometrics to estimate a
GGM works as follows: Let’s assume a set of random
variables y that are normally distributed with mean
zero and variance-covariance matrix R, and let K
(kappa) be the inverse of R,

K ¼ R�1 (5)

then, each element kij (row i, column j of K) can be
standardized to yield the partial correlation between
two variables yi and yj, given all other variables in y
(Epskamp & Fried, 2018):

CorðYi,Yjjy�ði, jÞÞ ¼ � kijffiffiffiffiffi
kii

p ffiffiffiffiffi
kjj

p (6)

Epskamp and Fried (2018) pointed out that model-
ing K in a way that every nonzero element is treated
as a freely estimated parameter generates a sparse
model for R: The sparse model of the variance-covari-
ance matrix is the GGM (Epskamp & Fried, 2018).
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This partial correlation matrix represents a fully
connected network where all nodes are connected to
all other nodes. Typically, a network estimation
method is applied to remove non-relevant relations
resulting in a sparser network (i.e., each node is no
longer connected to all other nodes). The level of
sparsity of the GGM can be set using different meth-
ods, but the most common method is to apply a vari-
ant of the least absolute shrinkage and selection
operator (LASSO; Tibshirani, 1996) termed graphical
LASSO (GLASSO; Friedman et al., 2008). The
GLASSO is a regularization technique that estimates
both the model structure and the parameters of a
sparse GGM (Epskamp & Fried, 2018). It has a tuning
parameter (k) that is chosen by minimizing the
extended Bayesian information criterion (EBIC; Chen
& Chen, 2008), which has been shown to accurately
retrieve the simulated network structure in Monte
Carlo studies (Epskamp & Fried, 2018; Foygel &
Drton, 2010).

A newer version of EGA (Golino et al., 2020) uses a
different network estimation method called triangulated
maximally filtered graph method (TMFG; Massara
et al., 2016; Christensen et al., 2019). The TMFG
method computes a zero-order correlation matrix from
the data and applies a constraint on the number of
edges to retain in the network (3n� 6, where n is the
number of nodes; Massara et al., 2016). The algorithm
begins by identifying the four variables with largest
sum of correlations to all other variables and connects
them to each other. Then, variables are iteratively
added to the network based on the largest sum of three
correlations to nodes already in the network. This pro-
cess is repeated until all nodes are connected in the
network. The resulting network is composed of 3- and
4-node cliques (i.e., sets of connected nodes; a triangle
and tetrahedron, respectively). Hereafter, EGA will
refer to EGA with GLASSO network estimation and
EGAtmfg will refer to EGA with TMFG network.

Once the network is estimated using one of these
two methods, the Walktrap community detection
algorithm is applied. A detailed introduction of the
walktrap algorithm can be found in Golino et al.
(2020). In the next paragraphs we summarize how
this algorithm works. The Walktrap algorithm uses a
process known as random walks or stochastic transi-
tions from one node to another over an edge. To
define the random walk, let A be a square matrix of
edge weights (e.g., partial correlations) in the network,
where Aij is the strength of the (partial) correlation
between node i and j and a node’s strength is the sum
of node i’s connections to its neighbors NS ¼Pj Aij:

The steps move from one node to another randomly
and uniformly using a transition probability, Pij ¼
Aij

NSðiÞ , which forms the transition matrix, P. The tran-
sition matrix is used to compute a distance metric, r,
measuring the structural similarity between nodes
(Equation 7), and is computed to determine the com-
munities that the nodes belong to. This structural
similarity is defined as (Pons & Latapy, 2005):

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

ðPik � PjkÞ2
NSðkÞ

vuut : (7)

This distance can be generalized to the distance
between nodes and communities by beginning the
random walk at a random node in a community, C.
This can be defined as:

PCj ¼
1
jCj
X
i2C

Pij: (8)

Finally, this can be further generalized to the
distance between two communities:

rC1C2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

ðPC1k � PC2kÞ2
NSðkÞ

vuut , (9)

where this definition is consistent with the distance
between nodes in the network (Equation 7).

As pointed by Golino et al. (2020), the algorithm
begins by having each node as a cluster (i.e., n clus-
ters) and then begins to iteratively choose two clusters
after computing the distances, r, between all adjacent
nodes. These two clusters chosen are then merged
into a new cluster, updating the distances between the
node(s) and cluster(s) with each merge (in each k ¼
n� 1 steps).

If clusters are adjacent to one another (i.e., an edge
between them), then they are merged using an
approach based on Ward’s agglomerative clustering
(Ward, 1963) that depends on the estimation of the
squared distances between each node and its commu-
nity (rk), for each k steps of the algorithm. Since com-
puting rk is computationally expensive, Pons and
Latapy (2005) adopted an efficient approximation that
only depends on the nodes and the communities rather
than the k steps. The approximation seeks to minimize
the variation of r that would be induced if two clusters
(C1 and C2) are merged into a new cluster (C3):

DrðC1,C2Þ ¼ 1
n

X
i2C3

r2iC3
�
X
i2C1

r2iC1
�
X
i2C2

r2iC2

� �
: (10)

The resulting values of Ward’s approximation
adopted by Pons and Latapy (2005) can be stored in a
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balanced tree, and a sequence of Pk partitions into
clusters (1 � k � n, being n the total number of
nodes) is obtained. The best number of clusters is
defined as the partition that maximizes modularity.

As Golino et al. (2020) note, modularity is a meas-
ure that was proposed by Newman (2004) to identify
meaningful clusters in networks and can be calculated
as follows. Let j and k be two clusters in a network
with m and n nodes. If the number of edges between
clusters is p, then one-half of fraction of the edges
linking j and k is ejk ¼ 1

2 p, so that the total fraction of
edges between the two clusters is ejk þ ekj (Newman,
2004). Conversely, ejj represents the fraction of edges
that fall within cluster j, whose sum equals one:P

j ejj ¼ 1: Newman (2004) points out that a division
of networks into clusters is meaningful if the value of
the sums of ejj and ekk is maximized. However, in
cases where only one cluster is presented, the maximal
value will be one, which is also the value of

P
j ejj:

Therefore, for networks composed by only one cluster
this index is not informative. A solution Newman
(2004) proposed was to calculate an index that takesP

j ejj and subtract from it the value that it would
take if edges were placed at random. For a given clus-
ter j, the modularity is calculated as:

Q ¼
X
j

ðejj � a2j Þ, (11)

where aj is given by
P

k ejk, which represent the frac-
tion of edges that connect to vertices in cluster j.
Therefore, the modularity index penalizes network
structures with only one cluster, since in this condi-
tion the value of Q would be zero (Newman, 2004).

Golino and Epskamp (2017) studied the accuracy
in estimating the number of dimensions of EGA along
with six classical techniques in a simulation manipu-
lating the number of factors, number of items, sample
size, and correlation between factors. Golino and
Epskamp (2017) showed that the most accurate tech-
niques were PA (89% of accurate estimates) and EGA
(93%). More recently, Golino et al. (2020) compared
EGA and EGAtmfg along with five factor-analytic
techniques, including two automated versions of
Cattell’s scree test (Cattell, 1966): scree test optimal
coordinate (OC) and acceleration factor (AF) methods
(Raiche et al., 2013). The results presented by Golino
et al. (2020) showed that EGA (87.91%), parallel ana-
lysis (83.01%) and EGAtmfg (74.61%) presented high
to moderately high accurate estimations (i.e. correctly
estimating the number of simulated factors). Golino
et al. (2020) also showed that EGA works well for
both dichotomous (overall accuracy of 85%) and con-
tinuous data (overall accuracy of 91%), although the

accuracy in estimating the number of simulated fac-
tors was higher for continuous data.

On the one hand, Golino et al. (2020) found that
when EGA and EGAtmfg provided the same estimate
for 78% of the datasets, they had a nearly perfect
accuracy (91.85%). On the other hand, when the two
methods disagreed, the accuracy of both EGA (73.3%)
and EGAtmfg (12.9%) diminished. In these cases
where EGA and EGAtmfg disagree, it’s important to
consider potential alternative solutions (with more or
fewer dimensions) to those suggested by the methods.
In this case, a fit index specifically designed for
dimensionality assessment would play a crucial role,
motivating the current article.

Another issue of central importance is the number
of steps used in the random walk process of the
Walktrap algorithm. To date, EGA has been evaluated
using the default value of four steps. Given previous
simulation evidence, four steps appears to be adequate
for the number of variables typically used in psycho-
logical constructs, which has been verified in simula-
tions outside of the area (Pons & Latapy, 2005).
Indeed, in Pons and Latapy (2005) seminal study, three
and four steps appeared to be optimal when there are
fewer than 100 variables. Selecting the optimal number
of steps is important since it may increase the precision
of the EGA estimation, leading to more reliable and
interpretable factors. Therefore, developing a fit metric
that could be used to compare the dimensionality
structure estimated via EGA with different numbers of
steps used in the Walktrap algorithm (e.g., from 3 to
10) could improve the precision of the EGA procedure.

Entropy and the structure of multivariate data

The current paper presents a family of three new fit
indices, Entropy Fit Indices, which are based on an
information-theoretic concept of entropy that can be
used to check the fit of the dimensionality structures
estimated via EGA and other factor-analytic methods.
This section introduces the main concepts used to
develop the EFIs, starting with the concept of
Shannon’s entropy (Shannon, 1948) and later intro-
ducing Von Neumann’s entropy (Von Neumann,
1927). The goal of this section is to help the reader
understand the conceptual and technical origins of the
entropy fit measures proposed in the current article.

Shannon’s entropy: estimation and properties

The study of entropy originated in physics (specific-
ally, thermodynamics) with the work of Boltzmann
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and others (Watanabe, 1960). Although a specific
type of entropy was being used in communication
theory as early as 1928 (Watanabe, 1960), a formal
mathematical theory of communication based on
entropy was later developed by Shannon (1948).
The use of entropy has increased significantly over
the years and across many different areas such as
communication, neuroscience (Paninski, 2003), biol-
ogy (Tsuruyama, 2018), ecology (Harte & Newman,
2014), physics (Zurek, 2018), chemistry (Ferenci &
Kov�acs, 2014), and other fields (Volkenstein, 2009).

The entropy of a discrete random variable X
characterizes the uncertainty associated with X or
the degree of disorganization of X (Wiener, 1961).
In other words, it depicts the average amount of
unpredictability that is removed when the outcome
of X is known (Yeung, 2008), which can also be
considered a measure of information in X (entropy
and information are negatively related). Entropy
depends on the distribution of p(X), and is maxi-
mized when all events of X are equiprobable (i.e.,
pðxÞ ¼ 1

N , where N is the number of elements of X;
Shannon, 1948).

The maximum likelihood estimator (MLE) or the
plug-in method (Antos & Kontoyiannis, 2001) is one
of the most common methods to estimate the entropy
of a random variable. Let X be a discrete random vari-
able that takes on values in a set X ¼ ðx1, x2, :::, xnÞ,
with a probability mass function pðxÞ ¼ PðX ¼ xÞ:
Antos and Kontoyiannis (2001) showed that consider-
ing additive functionals with the general form:

F¢g
X
x2X

f ðx, pðxÞÞ
� �

, (12)

where f and g are non-negative arbitrary real-valued
functions, the plug-in estimate for F is F̂ ¼ FðpnÞ,
where pn is the empirical distribution:

pnðxÞ ¼ 1
n

Xn
j¼1

IðXj¼xÞ: (13)

The MLE of entropy is, thus:

Ĥ ðpnÞ � �
X
x2X

pnðxÞlogpnðxÞ: (14)

Or, more directly:

HðXÞ ¼ �
X
x2X

pðxÞlogpðxÞ: (15)

where p(x) is the relative frequency of the ele-
ments x 2 X :

Entropy can also be extended to multiple variables.
Let X and Y be discrete random variables with a joint

probability of p(x, y). The entropy of the joint distri-
bution is (Shannon, 1948):

HðX,YÞ ¼ �
X
x2X

X
y2Y

pðx, yÞlogpðx, yÞ: (16)

In the case where X and Y are independent varia-
bles, their joint entropy will always be less than or
equal to the sum of their individual entropies:

HðX,YÞ � HðXÞ þHðYÞ: (17)

If X and Y are not independent variables, present-
ing a conditional probability distribution for Y given
X as pðyjxÞ, then the conditional entropy HðYjXÞ is
“the average of the entropy of Y, for each value of X,
weighted according to the probability of getting that
particular X” (Shannon, 1948, p. 12). Mezard and
Montanari (2009) summarizes the idea of conditional
entropy as the amount of information we obtain from
the value of y if we know x. The MLE estimation of
conditional entropy is:

HðYjXÞ ¼ �
X
x2X

pðxÞ
X
y2Y

pðyjxÞlogpðyjxÞ: (18)

The joint entropy of X and Y can be re-written as
the entropy of X plus the entropy of Y given X:

HðX,YÞ ¼ HðXÞ þHðYjXÞ: (19)

In other words, the uncertainty of the joint
event (X, Y) is the uncertainty of X plus the
uncertainty of Y when X is known (Shannon, 1948).
Hence, the uncertainty of Y never increases by know-
ledge of X:

HðXÞ þ HðYÞ � HðX,YÞ ¼ HðXÞ þHðYjXÞ
[HðYÞ � HðYjXÞ: (20)

Also, if X and Y are independent,
then HðYÞ ¼ HðYjXÞ:

Total correlation

In his seminal paper, Watanabe (1939) created a
modified index of entropy termed total correlation
to measure not only the uncertainty of random var-
iables, but also the strength of their correlation
beyond their average interaction (Watanabe, 1960).
The total correlation of a set of variables X ¼
ðx1, x2, :::, xnÞ is a non-negative index that increases
as entropy of individual variables increases or as
entropy of the set of variables (the joint entropy of
X) decreases (Watanabe, 1960), and is calculated as
follows:
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CtotX ¼
Xn
i¼1

HðxiÞ
 !

�Hðx1, x2, :::, xnÞ � 0: (21)

The interpretation of total correlation provided by
Watanabe (1960) can be illustrated with a very simple
example. Suppose the set of variables X is divided in
two subsets: t containing half the elements of X and
x containing the other half. Observing the variables
contained in t and x separately, the information in
each subset is HðtÞ and HðxÞ: The individual infor-
mation in each subset of variables individually is
higher than the information carried by X if and only
if t and x are independent. In this scenario of inde-
pendence, total correlation is the loss of information
or redundancy. If HðtÞ and HðxÞ are dependent, then
the difference between their joint entropy and the
sum of their individual entropies is a measure of the
correlation between them, reflecting ignorance before
observation. Watanabe (1960) points out that without
any observation, the ignorance about a subset t is
HðtÞ, but after observing t the ignorance becomes
HðXÞ �HðtÞ: The decrease of ignorance is thus the
information about x provided by the observation
of t:

Total correlation was used as the basis for a tech-
nique termed interdependence analysis (Watanabe,
1969), which replaced a metric of distance to this
entropic measure of correlation in cluster identifica-
tion. The general idea of interdependence analysis is
to partition a set into subsets until interdependence is
minimized (Watanabe, 2000). Watanabe (2000)
showed that the construction of clusters using total
correlation could lead to unwanted problems in the
partitioning of a multidimensional space of variables.
In particular, by not considering the size of the sub-
sets of a multidimensional space, small subsets could
be removed due to their small entropy value, irre-
spective of the relationship to the other subsets.
Watanabe (2000, 2001) introduced a slight modifica-
tion to the interdependence analysis process by modi-
fying the total correlation index (Equation 21) and
replacing it with the K-function. Considering a set of
variables X ¼ ðx1, x2, :::, xnÞ,Xt, and Xx with cardinal-
ities n1 and n2 (respectively), the K-function represent-
ing the interdependence between Xt and Xx is given
by:

kðXt,XxÞ ¼ n1HðXtÞ þ n2HðXxÞ
� ðn1 þ n2ÞHðXt,XxÞ: (22)

Contrary to the entropy index that is infra-additive
(see Equation 17), the product of entropy by the

cardinalities is supra-additive, making the K-function
non-positive:

n1HðXtÞ þ n2HðXxÞ � ðn1 þ n2ÞHðXt,XxÞ
[kðXt,XxÞ � 0:

(23)

Using the notation above, the K-function is the dif-
ference between the average entropy of Xt and Xx

from the entropy of the super-set X : The K-function
can be used as a measure of entropy reduction by par-
titioning through which the minimization is the
reduction of the uncertainty or unstableness
(Watanabe, 2000, 2001) in the partition of a multidi-
mensional space. It can also be interpreted as the
maximization of information gain by the partitioning
of a multidimensional space (Watanabe, 2000).
Despite its interesting characteristics, the K-function
could not be used as a fit index for dimensionality
assessment (or for clustering) because it decreases
with the increase in the number of subgroups of vari-
ables (i.e., clusters). Therefore, the application of K-
function to decide on the number of clusters, factors,
or partitionings of a multidimensional space is lim-
ited.

The entropy fit indices: properties
and estimation

Given the limitation of the K-function proposed by
Watanabe (2000), it is necessary to develop a new
metric that does not decrease with the increase in the
number of partitions of a multidimensional space (or
clusters, factors, and so on). The Entropy Fit Index
(EFI) was developed as an alternative to the K-func-
tion with the goal to identify the best structure of a
given set of random variables from two or more alter-
native structures. In other words, EFI can be used to
identify the best partitioning of a multidimensional
space that better reflects the underlying latent factors
without necessarily decreasing with the increase in the
number of factors.

Let g be a set with two latent factors (g ¼ ðga, gbÞ)
with variance-covariance matrix R :

R ¼ KUK0 þH, (24)

where lambda (K) is a k� 2 factor loading matrix for
k variables and two factors, phi (U) is the structure
matrix of the latent variables (i.e., a 2� 2 matrix of
correlations among factors), and theta (H) is the
covariance matrix of the residuals. Now, let ga and gb
be two latent factors associated with the following
matrices of observable scores:
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A ¼

a11 a12 a13 � � � a1n
a21 a22 a23 � � � a2n
a31 a32 a33 � � � a3n
..
. ..

. ..
. . .

. ..
.

ap1 ap2 ap3 � � � apn

2
666664

3
777775

B ¼

b11 b12 b13 � � � b1m
b21 b22 b23 � � � b2m
b31 b32 b33 � � � b3m
..
. ..

. ..
. . .

. ..
.

bp1 bp2 bp3 � � � bpm

2
666664

3
777775

where p is the number of participants (subjects), n is
the number of variables associated with ga, and m is
the number of variables associated with gb. Sum
scores can be computed as:

Sga ¼

sa1
sa2
sa3
..
.

sap

2
6666664

3
7777775

(25)

Sgb ¼

sb1
sb2
sb3
..
.

sbp

2
6666664

3
7777775

(26)

where sa1 and sb1 are the sum scores of variables in A
and B (respectively) for participant one.

The entropy fit index of the structure formed by ga
and gb can now be computed as:

EFI ¼ HðSgaÞ þHðSgbÞ
2

� HðSga , SgbÞ
� �

þ Hmax � HðSgaÞ þHðSgbÞ
2

� �
�

ffiffiffi
2

p� �
, (27)

where HðSgaÞ and HðSgaÞ are the entropy of the sum
scores of the variables from factors ga and gb (respect-
ively), HðSga , SgaÞ is the joint entropy of the sum
scores, and 2 is the number of factors. The entropy of
the sum scores for all variables from ga and ga is
Hmax. So, Hmax can be considered as the entropy esti-
mated for a single factor containing all the nþm vari-
ables in ga and gb. Finally, the difference between the
maximum entropy (i.e., entropy estimated for a single
factor containing all the nþm variables) and the aver-
age entropy of the factors is multiplied by the square
root of the number of factors (from now on this dif-
ference will be termed difference entropy).

In sum, Equation 27 calculates the difference
between the average entropy for the individual factors
and the joint entropy of the factors, while including a
penalization for the number of factors. The penaliza-
tion modulates the EFI to not decrease with an
increase in the number of factors, except if each add-
itional factor decreases the uncertainty or disorder of
the system of variables. Equation 27 can be easily
extended to NF factors:

EFI ¼
XNF

i¼1
HðSgiÞ

NF
� H Sg1 , Sg2 , :::, SNFð Þ

" #

þ Hmax �
XNF

i¼1
HðSgiÞ

NF

 !
� ffiffiffiffiffiffi

NF
p

" # (28)

The EFI can be used as a measure of entropy
reduction by partitioning of a multidimensional space
into several groups of variables, in which the mini-
mization is the minimization of the uncertainty or dis-
order due to the correct identification of the
underlying factors. In contrast with the K-function,
EFI does not decrease with the increase in the number
of factors. The EFI will be lower if the correct struc-
ture is provided (i.e., the correct number of factors
and the correct composition of items per factor), irre-
spective of the number of factors. This principle is due
to the entropy and the fineness of classification (e.g.,
classifying items into subgroups) theorem (Watanabe,
2000) that states the following:
Theorem 1 (Entropy and the Fineness of
Classification). Let XI and XJ be subsets of X, and A be
a fixed set of predicates. If a classification of A with
respect to the latter is a refinement of the classification
with respect to the former then the formal entropy of
XI is never larger than that of XJ.

Theorem 1 implies that a structure that splits a set of
random variables into groups, which reflect the underly-
ing latent factors, will have a lower entropy than a
structure that does not reflect the latent factors. An
example helps illustrate this principle. Let g1 and g2 be
two latent factors with four variables each. For every
unique combination of the items into two sets of four,
the EFI is recorded, generating the result showed in
Figure 1. The first and last elements of the x-axis repre-
sent the correct structure (1, 1, 1, 1, 2, 2, 2, 2 or
2, 2, 2, 2, 1, 1, 1, 1), while the other elements of the x-axis
presents all the other possible combinations of the vari-
ables into two factors (e.g., 1, 1, 1, 2, 1, 2, 2, 2). At the
bottom of Figure 1, a matrix representing the distribu-
tion of the variables into two factors (black representing
variables from factor g1, white representing variables
from factor g2) is shown. The columns of the matrix
show the distribution of the items into two groups,
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while the rows are divided into two parts, the first four
rows represents g1, the last four rows represents g2.

Figure 1 shows a perfect symmetric relationship
between the distribution of variables per factor and
the EFI index (y-axis). The EFI is the same for the
structure ð1, 1, 1, 1, 2, 2, 2, 2Þ and ð2, 2, 2, 2, 1, 1, 1, 1Þ:
Also, ð1, 1, 1, 2, 1, 2, 2, 2Þ, second element in the x-axis,
and ð2, 2, 2, 1, 2, 1, 1, 1Þ, 69th element of the x-axis,
has the same EFI. This symmetric behavior of EFI can
be explained by the nature of the entropy measures
based on total correlation or on the K-function: it
reflects the relationship among groups of variables
rather than the relationship between variables. Thus,
every time a group of variables is classified in an
incorrect way (i.e., not reflecting the true underlying
latent factors) there is loss of information and the EFI
increases. For example, if EFI were computed in the
same data used to generate Figure 1, but with a three-
factor structure instead of two (i.e., 1, 1, 1, 1, 2, 2, 3, 3),
the EFI would increase from -0.402 to -0.328.

It is important to note that Figure 1 focuses on a
multidimensional structure with two factors and all
combinations of variables in two groups of four varia-
bles. The pattern is different if we vary the number of
factors, in which the EFI value would be lower only if
the correct structure is provided, increasing linearly
with the number of factors. This is an important dif-
ference between EFI and the K-function since the

latter always decreases with the increase in the num-
ber of groups of variables (or factors).

To illustrate this principle, consider a multidimen-
sional structure with 100 factors, four variables per
factor, and a process with 100 steps. In the first steps,
the EFI, total correlation, K-function, and the differ-
ence between Hmax and the average entropy of the
factors (difference entropy) is recorded using the cor-
rect structure (i.e., 100 factors, four variables per fac-
tor). In each subsequent step one factor is split into
two sub-factors, with two variables each and all the
indices used in the first step are recorded. The result
of this process shows the variability of the EFI, total
correlation, K-function, and difference entropy as the
factors are sequentially sub-divided into two factors.

Figure 2 shows exactly the pattern described above.
The K-Function of the factors (or average entropy of
the factors) decreasing with the number of latent vari-
ables, while the difference entropy increases following
an exponential function (see Equation 29).

HDif ’ 1:1568� eð0:0335�NFÞ

1þ eð0:0335�NFÞ : (29)

In sum, what Figure 2 shows is that how EFI dif-
fers from the K-function and makes it more suitable
as a measure of fit due to the difference entropy,
which penalizes the number of partitions of the multi-
dimensional space or number of factors.

Figure 1. Entopy fit index per combination of variables into two factors.
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In terms of estimation, several estimators are avail-
able for entropy (especially empirical entropy or
Shannon entropy; Paninski, 2003). In the current art-
icle, the maximum likelihood estimator of entropy
(Equation 15) is used to calculate the EFI. In the MLE
of entropy, the number of bins to compute the empir-
ical distribution of the continuous variables needs to
be provided. The optimal number of bins can be esti-
mated using the formula suggested by Cellucci et al.
(2005), where the number of bins is the greatest inte-
ger such that:

NBins �
ffiffiffiffi
N
5

r
, (30)

where N is the sample size. So, after calculating the
number of bins, the sum score of each group of varia-
bles (indicating a specific latent factor) is partitioned
into NBins elements, and Equation 28 is computed. It
is important to note that the plug-in estimator of
entropy, as used in the current paper, can only be
computed with raw data.

Entropy fit index with Von Neumann’s entropy
and the total entropy index: estimations using
a correlation matrix

Because it’s common in the areas of psychology, edu-
cation, health and related fields for a researcher to
have access only to the correlation matrix of multi-
variate datasets, it is valuable to have an alternative
estimation for the EFI that could be computed using
correlations. A plausible and approximate solution is
to use matrix algebra to calculate Von Neumann

entropy (Von Neumann, 1927)—an index that was
developed to quantify the amount of disorder in a sys-
tem. It’s also been used to quantify the entanglement
between two subsystems in quantum physics (Preskill,
2018), which occurs when two (or more) particles
become inextricably linked. The entanglement of two
photons can be verified using specific visualizations of
the spatial correlations and momentum correlations
(Moreau et al., 2019). In this case, the visualization
provides a clue to how linked (entangled or mixed)
two systems (or particles) are. The entanglement of
two or more systems can also be expressed in terms
of a density matrix, a type of matrix used in quantum
mechanics that is akin to the probability distribution
of position and momentum (i.e., phase-state probabil-
ity) in classical statistical mechanics (Hall, 2013). Any
density matrix has three main characteristics: (1) it is
real symmetric, (2) positive semi-definite, and (3) has
trace equal to one.

Preskill (2018) shows that for any density matrix
q, Von Neumann entropy is:

SðqÞ ¼ �trðq log qÞ: (31)

Any correlation matrix can be transformed into a
density-like matrix by using the number of variables
as a scaling factor that will make the trace of the
matrix equal to one (Anderson, 1963). By dividing
the elements of the matrix by the number of variables,
the correlation matrix will hold the same properties as
any density matrix.

Wihler et al. (2014) show that eigenvalues can be
used to estimate Von Neumann entropy. Given a
density matrix q with eigenvalues k1, k2, :::, km � 0,

Figure 2. Entopy fit index per combination of variables into two factors.
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Von Neumann entropy is:

SðqÞ ¼ �trðLðDÞÞ, (32)

where L is a continuous function on the real interval
½0,1Þ that takes values x log ðxÞ if x > 0 and 0 if
x¼ 0, and LðDÞ ¼ diagðLðk1Þ,Lðk2Þ, :::,LðkmÞÞ: In
other words, the Von Neumann entropy of a density
matrix is the Shannon entropy of the vector of eigen-
values (Preskill, 2018).

As presented earlier, to calculate the entropy fit
index of a given structure using Shannon’s entropy
the joint entropy of the factors must be computed.
The joint Von Neumann entropy of two (or more)
density matrices can be calculated as the Kronecker
product of the matrices. Given two density matri-
ces, qA and qB, the product state qAB is given by
qA � qb (Preskill, 2018). Therefore, after calculating
qAB, Equation 32 can be used to estimate the Von
Neumann entropy of the joint state (or the joint
Von Neumann entropy). If the number of joint
states is large (e.g., more than five), the resulting
Kronecker product can be very large. To avoid this
issue, the product of the individual eigenvalues can
be used instead of the Kronecker products,
since the eigenvalues of A� B is
k1l1, :::, k1lm, :::, k2l1, :::, k2lm, :::, knlm (Laub, 2005).

Since the EFI is estimated using the raw data (i.e.,
Shannon’s entropy), while Von Neumann entropy is
estimated using a density-like, scaled version of a cor-
relation matrix, two modifications from Equation 28
are necessary to estimate the EFI Von Neumann
(EFI.vn; see Equation 33). First, the sum scores of var-
iables belonging to the factors are replaced by sub-
matrices of q: So, two factors (ga and gb) can be rep-
resented as a different combination of sub-elements
(rows and columns) from q : as qa and qb: If the first
factor is composed by variables i, j and k of q, the
sub-matrix qa will be:

qa ¼
aii aij aik
aji ajj ajk
aki akj akk

2
4

3
5

The second factor being composed by variables m,
n and o of q, the sub-matrix qb will be:

qb ¼
bmm bmn bmo

bnm bnn bno
bom bon boo

2
4

3
5

The Von Neumann entropy of qa and qb are SðqaÞ
and SðqbÞ, respectively.

The second modification relates to the penalization
in which the maximum entropy is replaced by the
total entropy of the matrix SðqÞ: Also, the

penalization now is subtracted instead of added as in
Equation 28. EFI.vn can be computed for two factors
as follows:

EFIVN ¼ SðqaÞ þ SðqbÞ
2

� Sðqa � qbÞ
� �

� SðqÞ � SðqaÞ þ SðqbÞ
2

� �
�

ffiffiffi
2

p� �
: (33)

where SðqaÞ and SðqbÞ are the Von Neumann entro-
pies for factors ga and gb, SðqÞ is the total entropy of
the matrix q and Sðqa � qbÞ is the joint entropy of
the factors, which can be calculated using the
Kronecker product of the matrices or (in case of mul-
tiple factors) as the product of eigenvalues, as pointed
out earlier. Equation 33 can be easily expanded to NF

factors:

EFIVN ¼
XNF

i¼1
SðqiÞ

NF
� Sðq1 � q2 � � � � � qNF

Þ

2
4

3
5

� SðqÞ �
XNF

i¼1
SðqiÞ

NF

0
@

1
A� ffiffiffiffiffiffi

NF
p

2
4

3
5

(34)

The use of the joint entropy of the factors can be a
possible limitation for EFI.vn. In the EFI the joint
entropy is estimated directly using the raw data, but
in the EFI.vn it’s calculated using the Kronecker prod-
uct of the individual factors (or the product of the
individual eigenvalues per factor, as shown above).
This strategy seems useful to detect superposition of
states (in the present case the superposition is when
two factors are merged into one) since this is a typical
property of quantum information theory (Preskill,
2018; Zhao et al., 2015). However, if one pure state
(one factor) is split into two, generating a plausible
but incorrect structure, then the performance of the
EFI.vn may not be very accurate.

An alternative approach to EFI.vn is to use the
total entropy in the correlation matrix, which can be
calculated using Equation 32, instead of the joint
entropy of the factors in the left side of Equation 33.
This alternative EFI.vn measure, hereafter named total
entropy fit index with Von Neumman entropy
(TEFI.vn)1, maintains the same properties as EFI and
EFI.vn by modifying the penalization using only the

1It is important to note that in the TEFI.vn code used in the current
paper, entropy is estimated as the negative of the trace of the product of
the density matrix by the log of elements of the density matrix, instead
of using the matrix logarithm or the eigenvalues of the density matrix (as
implemented to calculate EFI.vn). Therefore, in the current
implementation, TEFI.vn is based on an entropy-like quantity. We should
explore this difference in future papers.
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sum of the factor entropies instead of the mean.
Then, TEFI.vn can be calculated as:

TEFIVN ¼
XNF

i¼1
SðqiÞ

NF
� SðqÞ

2
4

3
5

þ SðqÞ �
XNF

i¼1

SðqiÞ
 !

� ffiffiffiffiffiffi
NF

p
" #

: (35)

In sum, the entropy fit indices (EFI, EFI.vn and
TEFI.vn) represent a combination of both a theoretic
framework and empirical refinement. For example,
Equation 27 (and the general case in equation 28) can
be broken into two components, separated as EFI ¼
½A	 þ ½B	: Component ½A	 is similar to that of the
mutual information of a two variables IðA,BÞ ¼
HðAÞ þ HðBÞ �HðA,BÞ (or the total correlation of
multiple variables), with a modification that divide the
summation on individual entropies by the number of
factors yielding what Watanabe (2001) termed ‘K-
function’: KðA,BÞ ¼ ½ðHðAÞ þHðBÞÞ=2	 � HðA,BÞ: This
is the theoretical basis for this section. However, in
development we noticed that the K-function alone
was not enough to separate factors as KðA,BÞ strongly
favors having a larger number of dimensions. This is
because the entropy within individual factors showed
a decrease as the number of items included in the
sum scores within a factor decreased. That is H(A)
and H(B) tend to be lower if less items are used to
calculate the distribution of sum scores defining A
and B. Meaning that this section of KðA,BÞ is inflated
with the number of factors given a constant number
of items.

To account for this, we included a component ½B	
that reduces the influence of ½A	 by the number of
factors used to describe a given data set. That is, while
½A	 is expected to decrease monotonically as the num-
ber of factors increases, ½B	 is expected to increase as
the number of factors increase. ½B	 is a measure of the
difference from the theoretically maximally entropic
factor structure (a single factor) versus the average
amount of entropy seen across individual factors of a
given factor structure. In other words, ½B	 represents
the reduction in average entropy of a set of data con-
ditional on a given factor structure. The square root
of the number of factors was chosen in ½B	 in order to
control the expected growth trajectory of ½B	 as the
number of factors increases. We would expect that the
effect of adding an additional factor would be condi-
tional on the number of factors already being esti-
mated in the model, showing a decreasing effect as
the number of factors increases. That is, the expected

decrease in total entropy going from 1 to 2 factors
would be higher than the expected decrease in
entropy going from 100 to 101 factors. Multiplication
by the square root of the number of factors models
this behavior.

Methods

Two Monte-Carlo simulations were used to compare
the entropy fit indices (i.e., EFI, EFI.vn and TEFI.vn)
with the traditional fit indices used in factor models
(CFI, RMSEA, TLI, and SRMR). The goal of the first
simulation was to check which fit index is more
accurate in detecting the correct structure simulated,
assuming the number of latent factors is known. In
other words, given two latent factors with four varia-
bles each, which fit index is the most accurate in iden-
tifying the correct placement of variables within the
two factors?

The second Monte-Carlo simulation, on the other
hand, aims to compare the entropy fit indices and the
traditional fit indices in multiple scenarios, varying,
for example, the number of factors (same, less, or
more than the population structure used to generate
the observable data) and how the items are placed in
each factor (randomly or not). This second simulation
was implemented to answer the following question:
what happens with the fit indices (in terms of their
accuracy to correctly identify the number of factors
and their item composition) when the dimensionality
structure being investigated contains the same number
of factors, less factors, or more factors than the popu-
lation structure? Although the first simulation emu-
lates conditions that are not commonly observed in
empirical studies (we never actually know the number
of factors), the second simulation presents a more
realistic set of conditions.

Design

To investigate the adequacy of the entropy fit indices
(i.e., EFI, EFI.vn and TEFI.vn) and the traditional fit
indices used in factor models (CFI, RMSEA, TLI, and
SRMR) two Monte-Carlo simulations are presented.
The first simulation identifies the best fit indices
under the assumption that the correct number of fac-
tors is known. In other words, given two latent factors
with four variables each, which fit index is the most
accurate in identifying the correct placement of varia-
bles within the two factors? To answer this question, a
permutation strategy is implemented, similar to the
first example showed in the last section. The fit
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indices are computed for every unique combination of
the items into two sets of four (in a total of 70 unique
combinations, from (1,1,1,1,2,2,2,2), (1,1,1,2,1,2,2,2),
… , to (2,2,2,1,2,1,1,1), (2,2,2,2,1,1,1,1). Four between-
subject data factors were systematically manipulated:
the skew of the items (-2; 2; �2 and 2; �2 to 2 in
increments of 0.5), sample size (1000 and 5000), factor
loadings (.40, .55 and .70), and factor correlations (0,
.5 and .7).

In the second Monte-Carlo simulation, the fit indi-
ces will be compared in terms of their capacity to
identify the correct structure (number of factors and
the correct placement of items per factor) in four dif-
ferent set of conditions (shuffled, underfactoring,
overfactoring with mixed items, and overfactoring
with a more extreme condition; i.e., no mixed items).
For each set of conditions, the fit index for the correct
structure (i.e., the structure that corresponds exactly
to the simulated population structure; see Figures 3.A
and 4.A) is compared to an incorrect structure. The

incorrect structures were set as follows: One structure
presents the same number of factors as the population
structure, but with a random distribution or place-
ment of items per factor (shuffled condition; Figures
3.B and 4.B). A second structure reflects the number
of factors in the population minus one (underfactoring
condition; Figures 3.C and 4.C), while a third organ-
ization presents the same underfactoring structure,
but with a random assignment of items per factor
(underfactoring condition with random placement of
items; Figures 3.D and 4.D).

The fifth and sixth structures reflect the number of
factors in the population plus one (overfactoring con-
dition with mixed items; Figures 3.E and 4.E), with
only one pure factor (containing items from one sin-
gle factor) and a random assignment of items per fac-
tor overfactoring condition with random placement of
items; Figures 3.F and 4.F). The last condition reflects
the number of factors in the population plus one with
a more extreme condition where the factors contain

Figure 3. Population structure and examples of models tested, 4 items per factor.
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items from one single dimension (overfactoring condi-
tion with a more extreme condition; i.e., no mixed
items; Figures 3.G and 4.G).

Finally, four between-subject data factors were sys-
tematically manipulated in the second simulation: fac-
tor loadings (.40, .55, and .70), factor correlations (0,
0.5, and 0.7), number of items per factor (4 and 8)
and sample size (1000 and 5000). The number of fac-
tors was held constant (i.e., three factors).

Factor loadings of .40, .55, and .70 can be considered as
poor, good, and excellent, respectively; thus, representing
a wide range of factor saturations (Comrey & Lee, 2016).
The factor correlations simulated include the orthogonal
(.00), large (.50), and very large (.70) factor correlations,
according to Cohen (1988). The reason to simulate data
with very high factor correlations (.70) is because in some
areas within psychology (e.g., intelligence) researchers
sometimes have to distinguish between constructs that are
highly correlated (e.g., Kane et al., 2005). The factors gen-
erated were composed of four and eight indicators with
salient loadings, following previous simulation studies in

dimensionality assessment (Golino et al., 2020; Golino &
Epskamp, 2017; Velicer, 1976; Widaman, 1993). Sample
sizes 1,000 and 5,000 can be considered large (Li, 2016)
and very large with the latter allowing for the evaluation
of the dimensionality methods in conditions that can
approximate their population performance. Additionally,
these sample sizes were selected by taking into account
that tetrachoric correlations require large sample sizes to
achieve acceptable sampling errors (Timmerman &
Lorenzo-Seva, 2011).

Data generation

For each of part of the simulation, 500 sample data
matrices of binary variables were generated according
to a common factor model procedure that works as fol-
lows. First, the reproduced population correlation
matrix (with communalities in the diagonal) was
computed:

RR ¼ KUK0, (36)

Figure 4. Population structure and examples of models tested, 8 items per factor.
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where RR is the reproduced population correlation
matrix, lambda (K) is a k� r factor loading matrix for
k variables and r factors, and phi (U) is the structure
matrix of the latent variables (i.e., a r� r matrix of
correlations among factors). This procedure implies
that the generated data does not contain correlated
residuals (minor factors) at the population level.

The population correlation matrix RP was then
obtained by inserting unities in the diagonal of RR,
thereby raising the matrix to full rank. The next step
was performing a Cholesky decomposition of RP,
such that:

RP ¼ U0U: (37)

If either RP was not semi-positive definite (i.e., at
least one eigenvalue was � 0) or an item’s communal-
ity was greater than 0.90, the K matrix was replaced
and a new RP matrix was computed following the
same procedure. Subsequently, the sample data matrix
of continuous variables was computed as:

X ¼ ZU, (38)

where Z is a matrix of random standard normal devi-
ates with rows equal to the sample size and columns
equal to the number of variables.

The resulting continuous variables were dichotom-
ized by applying a set of thresholds according to spe-
cific levels of skewness. In the first part of the
simulation (the permutation of items per factors), the
following levels of skewness were used: �2, �2 and 2,
from –2 to 2 in increments of 0.5, and 2. In the
second part of the simulation, because binary variables
are not necessarily symmetrically distributed in prac-
tice, the level of skewness of each item was randomly
assigned with equal probability from a set of possible
values that ranged from –2 to 2 in steps of 0.50. The
thresholds used to generate these levels of skewness
for the binary variables were taken from (Garrido
et al., 2011, 2013).

It is common in practice to find complex structures
in which items present non-zero loadings in multiple
factors. To generate cross-loadings with magnitudes
consistent to those commonly found in real data
(Bollmann et al., 2015), the procedure described in
Meade (2008) was followed for the second part of the
simulation: cross-loadings were randomly drawn from
a normal distribution (with mean zero and variance
of .05) for all the items except for the first two in
each factor, which were set as markers (i.e., all of their
cross-loadings were fixed to zero). Of note, regarding
the generation of the main loadings: The function
generates the main loadings by drawing random val-
ues from a uniform distribution that has a range of

6:10 from the specified value. For example, if the
main loadings are set at 0.70, the function generates
loading values between 0.60 and 0.80.

Data analysis

We used R (R Core Team, 2017) for all our analyses.
The EFI, EFI.vn, and TEFI.vn were computed using
the EGAnet package (Golino & Christensen, 2019),
while CFI, RMSEA, TLI, and SRMR were calculated
using lavaan (Rosseel, 2012). Confirmatory factor
models were estimated using the WLSMV estimator.
The choice to use the WLSMV estimator was due to
the discrete nature of the simulated data (dichotom-
ous) since this estimator is theoretically justified for
the factor analysis of discrete data and it gives the
best results in simulation studies (Barendse et al.,
2015; Beauducel & Herzberg, 2006). The figures were
generated using the ggplot2 package (Wickham, 2016)
and the ggpubr package (Kassambara, 2018). To esti-
mate the EFI.vn and TEFI.vn, a tetrachoric correlation
was computed using the qgraph package (Epskamp
et al., 2012).

In order to evaluate the performance of the fit indi-
ces, the percentage of correct structure selection (PC)
was used:

PC ¼ RC

N
, for C ¼ 1 if Sselected ¼ Scorrect

0 if Sselected 6¼ Scorrect

� �
, (39)

where N is the number of sample data matrices simu-
lated, Sselected is the selected structure and Scorrect is the
correct structure. The PC criterion has boundaries of
0% and 100%, with 0% signaling complete inaccuracy
and 100% indicating perfect accuracy. Since in the
current simulation only one structure out of seven is
correct, PC has a theoretical base rate near 14%.

The strategies used to select a structure depend on
the fit index used. For EFI and EFI.vn, the selected
structure is always the one presenting the lower value.
For the other indices, two main strategies were used.
The first one is based on the cutoff values only:
CFI and TLI � :95, RMSEA and SRMR � :05: CFI
and TLI values equal to or greater than .95 can be
considered to reflect an excellent fit to the data
(Garrido et al., 2016; Hu & Bentler, 1999; Marsh
et al., 2004) as well as RMSEA and SRMR values
equal to or lower than .05 (Browne & Cudeck, 1992;
Chen et al., 2008; Garrido et al., 2016; Hu & Bentler,
1999; Marsh et al., 2004). If a structure other than the
correct structure presented a value that is considered
adequate (passes the cutoff points), then the fit index
received a score of zero (i.e., failed to identify the
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correct structure). The second strategy uses the fit
indices as relative measures of fit. Considering all the
conditions where the correct structure presented an
adequate fit value, the structure with the highest (CFI
and TLI) or lowest (RMSEA and SRMR) fit values is
selected. If the selected structure is not the correct
one, the respective score is zero. Scores of one are
only achieved when the selected structure is the cor-
rect structure. From now on, when the traditional fit
indices are used as relative measures of fit they will be
referenced using the abbreviation.rel: CFI.rel, TLI.rel,
RMSEA.rel and SRMR.rel.

For reproducibility purposes, all R scripts used in
the current article, as well as the Rmarkdown file with
the manuscript and codes used in the analysis of the
result, are available in an online repository at the
Open Science Framework platform here.

Results

Simulation 1: combination of variables into
two factors

The results of the first simulation shows that the fit
indices can be separated into two groups: one with
high PC (TEFI.vn, EFI.vn, SRMR.rel, EFI, TLI.rel,
RMSEA.rel and CFI.rel) and the other with low PC
(TLI, CFI, RMSEA, SRMR). The most accurate fit
indices were (from best to worst): TEFI.vn (94.08%),
EFI.vn (93.58%), SRMR.rel (88.80%), EFI (86.02%),
TLI.rel (84.96%), RMSEA.rel (83.87%) and (CFI.rel
82.17%). The least accurate fit indices were (from best
to worst): TLI (65.51%), CFI (57.45%), RMSEA
(32.43%), and SRMR (27.31%). Figure 5 shows the
distribution of the percentage correct per fit index.

Figure 6 shows how the accuracy varies per level of
factor loadings and correlations. In general, the accur-
acy improves with the increase in factor loadings (over-
all accuracy of 54.41% for loadings of .40, 76.29% for
loadings of .55 and 86.45% for loadings of .70) and
decreases with higher factor correlation (overall accur-
acy of 87.41% for correlations of 0, 76.96% for correla-
tions of .50 and 52.87% for correlations of .70).

TEFI.vn and EFI.vn presented an almost perfect
accuracy for factor loadings of .55 and .70 (PCTEFI:vn

¼98.41%, PCEFI:vn ¼98.24% and PCTEFI:vn ¼99.96%,
PCEFI:vn ¼99.92%, respectively), and an impressive
accuracy for factor loadings of .40 (PCTEFI:vn ¼83.87%,
PCEFI:vn ¼82.56%). EFI presented a good accuracy for
a loading of .40 (74.73%), and high accuracies for
loadings of .55 and .70 (89.92% and 93.40%, respect-
ively). TLI.rel, RMSEA.rel and CFI.rel presented lower
accuracies for small loadings (68.13%, 62.78% and
59.86%, respectively), but high accuracies for loadings
of .55 (93.44%, 92.38% and 90.79% respectively) and
.70 (93.32%, 96.46% and 95.86% respectively).

Considering the size of the correlation, it is inter-
esting to note that TEFI.vn, EFI.vn and TLI.rel pre-
sented a moderately high accuracy, even when the
correlation is .70 (PCTEFI:vn ¼87.61%, PCEFI:vn

¼86.97% and PCTLI:rel ¼ 80.02%), followed by
SRMR.rel (78.51%). EFI was the fifth best fit measure
when correlations between factors was .70 (74.43%),
followed by RMSEA.rel (70.82%) and CFI.rel
(70.78%). Tables 1 and 2 shows the mean percentage
correct and its 95% confidence interval for each level
of correlation and factor loading, respectively.

The skew of the items also plays a role in the
accuracy. When the skew is -2 (skew 1 in Figure 6),
the overall accuracy is 72.98%, when the skew is -2
and 2 (skew 2 in Figure 6), the overall accuracy is
66.61%. For a skew ranging from -2 to 2, by incre-
ments of .5 (skew 3), the general accuracy is 74.63%,
and when the skew is 2 (skew 4 in Figure 6) the over-
all accuracy is 75.30%.

TEFI.vn and EFI.vn stands out once again in the
worst condition in terms of skew, presenting an accuracy
of 92.64% and 91.80% for the skew -2 and 2, respectively,
followed by SRMR.rel (80.56%), RMSEA.rel (77.78%),
CFI.rel (75.66%), TLI.rel (75.44%) and EFI (74.26%).

Overall, TLI (47.53%), CFI (49.44%), RMSEA
(46.81%), and SRMR (44.56%) presented low accuracies,
and will not be presented in detail. Their low accuracy
can be explained by the values of these fit indexes, that
has a tendency to be in a range considered adequate by
the cutoff points used (� :95 for CFI and TLI; � :05
for RMSEA and SRMR). Figure 7 shows the

Figure 5. Percentage Correct per Fit Index. The horizontal lines
indicate the median values, the numbers inside the plots are
the mean values.
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distribution of the fit indices values across all combin-
ation of four items into two factor for factor loadings of
.40 and correlation between factors of .70. The values of
the traditional indices indicates that all the incorrect
structures could be considered as presenting a good fit,
if the cutoff values are used. Note that all tested struc-
tures present CFI and TLI values higher than .95 and
RMSEA and SRMR values lower than .05. Notably, the
CFI and TLI values are maximized when the correct
structure is specified, while RMSEA and SRMR values
are minimized. This pattern helps to understand why
using these indices as relative fit measures works much
better than using their cutoff values.

Simulation 2: shuffled, underfactoring and
overfactoring conditions

In terms of the overall performance, the fit indices
can be separated into four groups (see Figure 8): (1)
high accuracy (PC) in the four conditions tested
(TEFI.vn), (2) high or moderately high PC in three of
the four conditions (EFI, RMSEA.rel, CFI.rel,
SRMR.rel, TLI.rel), (3) high PC in two conditions
(EFI.vn), and (4) moderate or low PC across condi-
tions (TLI, CFI, SRMR and RMSEA). TEFI.vn pre-
sented an overall accuracy of 92% (see Figure 8),
followed by EFI (PC ¼ 84%) and TLI.rel (PC ¼ 82%).
On the one hand, TEFI.vn presented very high PCs

Figure 6. Percentage correct per levels of correlation (columns), skew (rows), loadings (color), and fit index.

MULTIVARIATE BEHAVIORAL RESEARCH 891



even in the most extreme overfactoring conditions
(see Figure 9), especially with correlated factors (PC
¼ 96.57%). On the other hand, TEFI.vn did not per-
form as well in the underfactoring condition with
high factor loading and high interfactor correlation
(PC ¼ 58.95%). This problem does seem to vanish if
the number of items is high (PC ¼ 100%).

EFI presented a very high PC in the shuffled
(99.68%) and underfactoring condition (99.98%), but
only a moderately high PC in the overfactoring condi-
tion (85.72%) and a moderate PC in the more extreme
overfactoring condition (52.45%). EFI.vn, by its turn,
presented a very high PC in the shuffled (100%) and
underfactoring condition (100%), but basically zero
accuracy in both overfactoring conditions. The CFA
indices used as relative fit measures (RMSEA.rel,
CFI.rel, TLI.rel, and SRMR.rel) were stable across the
shuffled, underfactoring, and overfactoring conditions,
presenting PCs ranging from 98% and 100%.
However, in the more extreme overfactoring condi-
tions their PCs dropped to 36.94% for TLI.rel, 26.23%
for RMSEA.rel, 15.84% for CFI.rel, and 0.50% for
SRMR.rel. When applied using cutoff values only, the
CFA fit measures presented low to moderate PCs in
the shuffled, underfactoring, and overfactoring

conditions as well as very low PC in the more extreme
overfactoring condition (see Figure 8).

Figure 9 shows a more detailed description of the
performance of the fit indices across conditions.
TEFI.vn presents a very high accuracy to detect the
simulated number of dimensions with PC equaled to
(or very close to) 100%. Even in the most extreme
overfactoring condition, TEFI.vn presents an impres-
sive accuracy in which most of the other fit indices
(except EFI) present moderately low to low accuracy
(see Table 3). In this condition, and with factor
loadings of .70, TEFI.vn presents a PC of 50.85% for
inter-factor correlations of 0, 100% for inter-factor
correlations of .50, and 100% for inter-factor correla-
tions of .70 (see Figure 9). Considering only the
shuffled, underfactoring, and overfactoring conditions,
the only situation where the accuracy of TEFI.vn is
not very high is in the underfactoring condition with
high interfactor correlation and high factor loading.

EFI, RMSEA.rel, CFI.rel, SRMR.rel, and TLI.rel pre-
sented very high PCs across conditions (shuffled,
underfactoring or overfactoring) when the loadings
were .70, irrespective of the correlation between factors,
sample size, and number of items. In the more extreme
overfactoring condition, however, RMSEA.rel, CFI.rel,

Table 1. Mean percentage correct and its confidence interval
for each level of correlation.
Method Correlations Mean 95% C.I. - Lower 95% C.I. - Upper

TEFI.vn 0 99.25 99.09 99.40
TEFI.vn 50 95.41 95.04 95.79
TEFI.vn 70 87.61 87.02 88.20
EFI.vn 0 98.85 98.66 99.04
EFI.vn 50 94.91 94.51 95.30
EFI.vn 70 86.97 86.36 87.57
SRMR.rel 0 96.76 96.44 97.07
SRMR.rel 50 91.20 90.70 91.71
SRMR.rel 70 78.51 77.78 79.25
EFI 0 96.63 96.31 96.96
EFI 50 86.99 86.39 87.59
EFI 70 74.43 73.65 75.21
RMSEA.rel 0 94.09 93.67 94.52
RMSEA.rel 50 86.78 86.18 87.39
RMSEA.rel 70 70.82 70.01 71.64
TLI.rel 0 86.15 85.53 86.77
TLI.rel 50 88.72 88.16 89.29
TLI.rel 70 80.02 79.30 80.73
CFI.rel 0 89.46 88.91 90.01
CFI.rel 50 86.27 85.65 86.88
CFI.rel 70 70.78 69.97 71.60
TLI 0 94.73 94.33 95.13
TLI 50 81.09 80.39 81.79
TLI 70 20.96 20.23 21.69
CFI 0 93.75 93.32 94.18
CFI 50 74.18 73.40 74.97
CFI 70 4.73 4.35 5.11
RMSEA 0 61.06 60.19 61.93
RMSEA 50 32.69 31.85 33.53
RMSEA 70 3.69 3.35 4.03
SRMR 0 50.73 49.83 51.62
SRMR 50 28.29 27.48 29.09
SRMR 70 3.00 2.69 3.31

Table 2. Mean percentage correct and its 95 confidence inter-
val for each level of factor loadings.
Method Loadings Mean 95% C.I. - Lower 95% C.I. - Upper

TEFI.vn 40 83.87 83.21 84.52
TEFI.vn 55 98.41 98.18 98.63
TEFI.vn 70 99.96 99.92 99.99
EFI.vn 40 82.56 81.88 83.24
EFI.vn 55 98.24 98.01 98.48
EFI.vn 70 99.92 99.88 99.97
SRMR.rel 40 74.85 74.07 75.62
SRMR.rel 55 96.39 96.05 96.72
SRMR.rel 70 95.17 94.79 95.56
EFI 40 74.73 73.96 75.51
EFI 55 89.92 89.39 90.46
EFI 70 93.40 92.96 93.84
RMSEA.rel 40 62.78 61.92 63.65
RMSEA.rel 55 92.38 91.91 92.86
RMSEA.rel 70 96.46 96.13 96.79
TLI.rel 40 68.13 67.30 68.97
TLI.rel 55 93.44 93.00 93.88
TLI.rel 70 93.32 92.87 93.76
CFI.rel 40 59.86 58.98 60.74
CFI.rel 55 90.79 90.27 91.31
CFI.rel 70 95.86 95.50 96.21
TLI 40 48.84 47.95 49.74
TLI 55 69.57 68.75 70.39
TLI 70 78.12 77.38 78.86
CFI 40 42.86 41.97 43.74
CFI 55 62.12 61.25 62.99
CFI 70 67.38 66.54 68.22
RMSEA 40 0.00 0.00 0.00
RMSEA 55 30.03 29.21 30.85
RMSEA 70 67.32 66.48 68.16
SRMR 40 0.00 0.00 0.00
SRMR 55 17.94 17.25 18.62
SRMR 70 64.06 63.20 64.92
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SRMR.rel, and TLI.rel presented low accuracies while
EFI presented a moderate accuracy. For factor loadings
of .70 in the extreme overfactoring condition, EFI pre-
sented a PC of 62.95% for inter-factor correlations of
0, 69.75% for inter-factor correlations of .50, and
69.40% for inter-factor correlations of .70 (see Figure
9). Conversely, EFI presented PCs similar to the other
CFA fit indices for factor loadings of .50, while EFI.vn
failed almost in all overfactoring conditions.

In terms of the CFA fit indices, TLI.rel was the
third most accurate fit index in the more extreme
overfactoring condition. For factor loadings of .70 it
presented a PC of 15.15% for inter-factor correlations
of 0, 40.12% for inter-factor correlations of .50, and
50.31% for inter-factor correlations of .70.

Table 3 shows the percentage correct and its 95%
confidence interval for each condition tested (shuffled,
underfactoring, overfactoring and extreme
overfactoring).

Applied example

The world health organization study on global
ageing and adult health (SAGE)

This empirical example investigates the dimensionality
structure of a large dataset from the World Health
Organization (WHO) Study on global ageing and
adult health (SAGE). Although being a longitudinal
study focusing on adults aged 50 years and older,

Figure 7. Distribution of the fit indices values across all combination of four items into two factors.
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WHO’s SAGE also collects data from nationally repre-
sentative adult samples (aged between 18 and 49 years)
in China. In the current paper, only data from the
first wave of data collection will be used.

The original sample is composed of 9,283 adults
aged between 18 and 99 years (Mean ¼ 60.53, SD ¼
11.91) with 53.40% being females. In terms of the
highest level of education completed, 25.09% finished
primary school, 18.22% high school (or equivalent),
27.96% secondary school, 21.82% less than primary
school, and 6.7% have college/pre-university/university
or post-graduate degree. The 9,283 participants

answered all 52 questions related to broader domain
labeled activities and participation, containing items
related to six theoretical domains: (1) social, commu-
nity and civic activities/involvement, (2) interpersonal
relations, (3) mobility, (4) self-care, (5) domestic life
and (6) personal history of work and employment.

The dataset was split into two random subsamples
(training and testing set), each containing 50% of the
data, for cross-validation. The results of both EGA
estimations were compared to the theoretical dimen-
sionality structure (six domains) briefly described
above. The EFI, TEFI.vn, and traditional factor-

Figure 8. Mean percentage correct (PC) per fit index (simulation two).

Figure 9. Mean percentage correct (PC) per fit index, in the shuffling, underfactoring and overfactoring conditions, for different
levels of factor loadings and correlation between factors.
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analytic fit measures were computed for each struc-
ture (i.e. the structures estimated using EGA with
GGM, EGAtmfg, plus the theoretical model) in the
training and testing sample. The TEFI.vn index was
used to select the optimal number of steps in the
Walktrap algorithm (used in the EGA technique),

comparing the dimensionality structure estimated via
EGA using from three to 10 steps.

Table 4 shows the factor-analytic fit values of the
theoretical model in the training (CFI ¼ 0.90, TLI ¼
0.89, RMSEA ¼ 0.04, SRMR ¼ 0.06) and test set (CFI
¼ 0.89, TLI ¼ 0.89, RMSEA ¼ 0.04, SRMR ¼ 0.06),
suggesting a poorer fit of this model compared with
the other two empirical models.

The structure estimated via EGA presented the
lowest TEFI.vn in both samples, compared with the
theoretical structure and the structure estimated via
EGAtmfg. Both EGA and EGAtmfg estimated five fac-
tors, but with a different composition of items per
factor. The factor-analytic fit measures were basically
identical for the factors estimated via EGA and
EGAtmfg, while TEFI.vn was lower for the structure
estimated using EGA in both samples (in the training
and testing/validation sample).

Figure 10 shows the structure estimated via EGA
and EGAtmfg, while Table 4 presents the variables,
the EGA and EGAtmfg factor numbers per variable,
the description of the variables and the theoretical fac-
tor per variable. Factor one (red nodes in Figure 10)
represents a socialization factor, with items such as
Q6001 (attending public meeting), Q6005 (had friends
over to your home) and Q6009 (went out of house to
see friends or relatives), among others. Factor two
(yellow/green-ish nodes) contains items related to
work and employment (e.g. Q6020: Do/did you usu-
ally work throughout the year, or do/did you work
seasonally, or only once in a while for your main
job?) and to the participation in the political life (e.g.
Q6021: Lots of people find it difficult to get out and
vote. Did you vote in the last state/national/presiden-
tial election?). Factor three (light green nodes) con-
tains items related to overall difficulty in the past
30 days with self-care (e.g., Q2036: In the last 30 days,
how much difficulty did you have bathing/washing
your whole body?), domestic work (e.g., Q2039: In the
last 30 days, how much difficulty did you have day to
day work?), mobility (e.g., Q2026: In the last 30 days,
how much difficulty did you have walking 100
meters), and with engaging in social events (Q2033: In
the last 30 days, how much difficulty did you have
joining community activities?). Factor four (blue
nodes) presents items related to overall difficulty in
daily activities (work or household activities, moving
around, doing vigorous activities, bathing, taking care
of appearance and staying by yourself). Factor five, by
its turn, contains items related to overall difficulty
with interpersonal relations and activities.

Table 3. Mean percentage correct and its 95 confidence inter-
val for each condition tested (shuffled, underfactoring, over-
factoring and extreme overfactoring).
Method Condition Mean 95% C.I. - Lower 95% C.I. - Upper

TEFI.vn Shuffled 100.00 100.00 100.00
TEFI.vn Under 93.05 92.60 93.51
TEFI.vn Over 100.00 100.00 100.00
TEFI.vn Over.Ext 76.74 75.98 77.50
EFI Shuffled 99.68 99.57 99.78
EFI Under 99.98 99.95 100.00
EFI Over 85.72 85.10 86.35
EFI Over.Ext 52.45 51.56 53.34
EFI.vn Shuffled 100.00 100.00 100.00
EFI.vn Under 100.00 100.00 100.00
EFI.vn Over 0.00 0.00 0.00
EFI.vn Over.Ext 0.00 0.00 0.00
TLI.rel Shuffled 99.26 99.11 99.41
TLI.rel Under 99.20 99.04 99.36
TLI.rel Over 99.03 98.85 99.20
TLI.rel Over.Ext 36.94 36.08 37.81
CFI.rel Shuffled 99.31 99.16 99.46
CFI.rel Under 97.30 97.01 97.59
CFI.rel Over 97.65 97.38 97.92
CFI.rel Over.Ext 15.84 15.18 16.49
RMSEA.rel Shuffled 99.60 99.48 99.71
RMSEA.rel Under 97.60 97.32 97.87
RMSEA.rel Over 97.97 97.72 98.22
RMSEA.rel Over.Ext 26.23 25.44 27.01
SRMR.rel Shuffled 100.00 100.00 100.00
SRMR.rel Under 100.00 100.00 100.00
SRMR.rel Over 99.66 99.56 99.77
SRMR.rel Over.Ext 0.50 0.38 0.63
TLI Shuffled 62.73 61.86 63.59
TLI Under 49.98 49.08 50.87
TLI Over 49.53 48.63 50.42
TLI Over.Ext 0.18 0.11 0.26
CFI Shuffled 60.38 59.50 61.25
CFI Under 43.76 42.87 44.65
CFI Over 43.84 42.95 44.73
CFI Over.Ext 0.06 0.02 0.10
RMSEA Shuffled 41.90 41.02 42.79
RMSEA Under 19.85 19.13 20.56
RMSEA Over 0.00 0.00 0.00
RMSEA Over.Ext 0.00 0.00 0.00
SRMR Shuffled 42.37 41.48 43.25
SRMR Under 19.24 18.54 19.95
SRMR Over 18.68 17.99 19.38
SRMR Over.Ext 0.00 0.00 0.00

Table 4. Fit measures for the SAGE dataset.

Data Model
Walktrap
Steps EFI TEFI.vn CFI TLI RMSEA SRMR

Train EGA 3 �5.03 �69.51 0.92 0.92 0.03 0.06
EGAtmfg 3 �5.89 �55.95 0.93 0.93 0.03 0.06
Theoretical

Model
�4.89 �46.53 0.90 0.89 0.04 0.06

Test EGA �5.52 �68.61 0.92 0.92 0.03 0.06
EGAtmfg �5.99 �54.64 0.93 0.93 0.03 0.06
Theoretical

Model
�4.89 �46.01 0.90 0.89 0.04 0.06
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Discussion

Reducing the dimensions of multivariate data has pro-
ven to be an extremely worthwhile task in the study
of behavior. This has generally taken the form of pro-
cedures inferring the number and nature of unmeas-
ured (latent) variables (e.g., factors) that can account
for the calculated relations among the observed varia-
bles. Willingness to ascribe causal properties to these
latent variables varies between investigators and is not
the primary concern of this article; however, accur-
ately estimating the number of dimensions (e.g., latent
variables) is our primary concern and often the main
concern of investigators.

For many researchers with a causal latent variable
perspective, the relations between latent variables can
provide the generality needed to articulate useful law-
fulness. An example used by Nesselroade and
Molenaar (2016) concerned the frustration produces
aggression hypothesis. Some students, frustrated
because they cannot solve a difficult mathematics
problem, might curse the teacher whereas other stu-
dents might slam down their books and walk out of
class and still others might slap at a fellow student
nearby. To say that “inability to solve a difficult math
problem leads to slapping a fellow student” might hold
for some students but it does not have generality
whereas at the latent variable level “frustration produ-
ces aggression” covers all three situations above.
Obviously, the properties of frustration and aggression
must be inferred from the observable variables such as

cursing, walking out, and slapping, but to build law-
fulness that has generality, latent variables are key.
The relations among latent variables are central to
constructing or inferring mechanisms that help build
common explanations of behavior. Extracting the
most out of one’s multivariate data relies heavily on
model fitting that best estimates the dimensionality
and nature of the latent variables. Therefore, powerful
methods for fitting models to data and judging the
goodness of that fit are indispensable.

It is common practice among applied researchers
and methodologists to use traditional fit indices from
factor analysis and structural equation modeling to
assess the factor solutions of their data because it pro-
vides useful diagnostic information, but also enables
the comparison of different dimensionality structures.
As pointed out earlier, there are only a few simulation
studies investigating the accuracy of traditional fit
indices (such as CFI and RMSEA) to estimate the cor-
rect number of factors (Clark & Bowles, 2018; Frazier
& Youngstrom, 2007; Garrido et al., 2016; Yang &
Xia, 2015) and, in general, they suggest that the trad-
itional fit indices should be used with caution, espe-
cially when analyzing dichotomous data. Clark and
Bowles (2018), for example, concluded that the com-
mon fit statistics cutoffs are, at best, imperfect tools
for guiding decisions regarding dimensionality. The
final suggestion is to use fit indices in conjunction
with other methods for assessing dimensionality. This
suggestion is perhaps best exemplified by combining

Figure 10. Structure of the SAGE data using EGA.
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EGA with the new fit indices presented in the current
paper (especially TEFI.vn and EFI) to obtain optimal
dimension identification.

The accuracy of the entropy fit measures in cor-
rectly identifying the number of simulated factors was
compared to RMSEA, CFI, TLI, and SRMR in two
Monte Carlo simulations. In the first simulation, two
latent factors with four variables each were simulated
and the fit indices were used to check the fit of 70 dif-
ferent combinations of variables within the two fac-
tors. The goal of the first simulation was to identify
the accuracy of the fit indices in detecting the correct
simulated structure, given that the number of factors
is correct but the placement of items per factor isn’t.
The results show that TEFI.vn and EFI.vn are the
most accurate fit measures, followed by SRMR (when
used as a relative measure of fit) and EFI. In general,
the RMSEA/SRMR cutoffs presented very low accura-
cies in almost all conditions tested, except when the
factor loadings were high and the interfactor correl-
ation was zero or .50. Even in this favorable condi-
tion, the accuracy dropped for highly skewed items
(skew 2; skew –2 and 2). For conditions with high
interfactor correlation (.70), the accuracy of the trad-
itional fit indices, using the cutoff values only, was
very low. When used as relative measures of fit, the
traditional fit indices (CFI, TLI, RMSEA and SRMR)
presented high accuracies, comparable to TEFI.vn,
EFI.vn and EFI, in almost all conditions.

In the second simulation, we investigated the
accuracy of the fit indices to identify the correct struc-
ture compared to shuffled, underfactored, and over-
factored conditions. TEFI.vn was the most accurate fit
index to correctly identify the correct dimensionality
structure. TEFI.vn presented a very high accuracy
even in the most extreme overfactoring condition, a
condition in which all the other fit indices (except
EFI) presented moderately low or low accuracies. EFI
presented a very high accuracy in the shuffled and
underfactor conditions, a moderately high accuracy in
the overfactoring condition, and was the second most
accurate fit measure in the most extreme overfactoring
condition (i.e. when one factor is split into two fac-
tors, without any items from other factors).

EFI.vn was also very accurate in the shuffled and
underfactoring conditions, but completely failed in the
overfactoring conditions. This result makes sense,
since Von Neumman’s entropy was developed to
understand entangled quantum states. In the current
simulation, the underfactor condition can be thought
as reflecting mixed “states”, since two simulated fac-
tors are merged as one single factor. Therefore, the

EFI.vn value increases when two factors are merged
into one relative to the EFI.vn value of the original
simulated structure. However, the EFI.vn measure
could not detect the correct simulated structure when
one factor is split into two factors. When a state is
not mixed but instead separated, then EFI.vn value
remains low because the states are still reflecting
homogeneous states. This may also be a consequence
of the strategy used to penalize the number of factors.
Future studies should investigate different penalization
methods to verify if it is possible to increase the
accuracy of EFI.vn in the overfactoring conditions. A
possible explanation to the difference in accuracy
between EFI.vn and the TEFI.vn is that the former
replaced the joint entropy of the factors by the total
entropy of the correlation matrix, which can be more
robust in conditions where the partition of the multi-
dimensional space is plausible but incorrect (i.e.,
extreme overfactoring condition).

The traditional fit indices, when used as absolute
measures of fit, presented moderate to high accuracies
in the shuffled and underfactoring conditions with
interfactor correlations of zero (orthogonal structures).
Notably, the accuracies dropped with the increase of
interfactor correlations becoming very low for interfac-
tor correlations of .70. A very similar pattern occurred
for the overfactoring condition. However, when the
overfactoring condition was more extreme (one factor
split into two pure factors), the cutoff values presented
low accuracies irrespective of the interfactor correlation
and factor loadings. Finally, when used as relative
measures, the traditional fit indices presented very high
accuracies for all conditions, except for the more
extreme overfactoring condition. These measures,
which are usually thought of as absolute are actually
not. Instead, our results show that they are better
thought of as relative measures. Therefore, our results
suggest that these measures should not be used as
absolute but rather relative fit measures.

In sum, the current paper corroborates previous
simulation studies, showing that the traditional factor-
analytic fit indices should be avoided for dimensional-
ity assessment purposes and not used as absolute
measures of fit (based on cutoff values). They are,
however, very accurate when used as relative measures
of fit specifically for the shuffled, underfactoring, and
non-extreme overfactoring conditions. Also, the three
new fit indices (EFI, EFI.vn, and TEFI.vn) were accur-
ate in identifying the simulated number of factors and
the respective placement of items per factor in the
shuffled and underfactoring conditions. Notably, only
TEFI.vn presented a high accuracy in both
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overfactoring conditions. These results represent an
important advance in the area of measures of fit for
structural and dimensionality analysis.

Finally, an empirical example was presented, using
data from the WHO’s Study on Global Ageing and
Adult Health (SAGE) from China. Exploratory graph
analysis was used to estimate the dimensionality struc-
ture using the GGM and the TMFG approaches, and
their fit were compared to the fit of a theoretical
model, in two random subsamples. The TEFI.vn index
pointed to the EGA (GGM) structure (five factors) as
the structure with the best fit to the data (compared
to the theoretical model and to the structure estimated
via EGAtmfg) in both samples (training and testing/
validation). Basically, CFI, TLI, RMSEA and SRMR
could not differentiate between the EGA and the
EGAtmfg structures, both presenting five factors but
with a different composition of items per factor.

Limitations

The limitations of the current paper can be summar-
ized in two main aspects. The first one related to the
data simulation approach used, which did not include
correlated residuals (minor factors) at the population
level. Moreover, only dichotomous data was used in
the simulation. Future studies would bring new light
into this area by incorporating other types of data
(e.g., polytomous and mixed type: continuous, dichot-
omous, and polytomous). Second, the entropy fit indi-
ces only work for multidimensional factors (i.e.,
structures with at least two factors) presenting a sim-
ple structure (one item linked only to one factor).
EGA uses the Walktrap algorithm, which is a tech-
nique that identifies communities in weighted net-
works where one node (or variable/item) is part of
only one community (or factor). The entropy fit indi-
ces were developed as a way to check the fit of differ-
ent dimensionality structures estimated via EGA (and
to compare them to theoretical structures). Future
studies should extend the entropy fit measures to
accommodate unidimensional structures and to allow
cross-loadings. Moreover, future research should
examine the extension of the EFIs to other structural
equation modeling structures, which would greatly
expand their utility to a larger number of researchers.

Conclusion

Our main conclusion is that EFI and TEFI.vn are
accurate fit measures that can be used to check the fit
of different dimensionality structures. They are

relative measures of fit that present higher accuracies
in detecting the correct dimensionality structure than
traditional fit measures used in exploratory factor ana-
lysis and SEM. However, contrary to CFI, RMSEA,
TLI and SRMR, the entropy fit measures cannot be
used to evaluate the absolute fit of a model. EFI and
TEFI.vn were developed to compare alternative
dimensionality solutions, evaluating the partitioning of
a multidimensional space in terms of its uncertainty
or unstableness. As with the K-function, EFI and
TEFI.vn are measures of entropy reduction by parti-
tioning, but unlike the latter, the new fit measures do
not decrease with the increase in the number
of factors.
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