
Running head: THE ERGODICITY INFORMATION INDEX 1

Towards a psychology of individuals: the ergodicity information index and a bottom-up1

approach for finding generalizations2

Hudson Golino1, John Nesselroade1, & Alexander P. Christensen2
3

1 Department of Psychology, University of Virginia4

2 Department of Psychology and Human Development, Peabody College, Vanderbilt5

University6

Author Note7

Add complete departmental affiliations for each author here. Each new line herein8

must be indented, like this line.9

Enter author note here.10

The authors made the following contributions. Hudson Golino: Conceptualization,11

Methodology, Formal Analysis, Writing - Original Draft Preparation, Writing - Review &12

Editing; John Nesselroade: Writing - Original Draft Preparation, Writing - Review & Editing;13

Alexander P. Christensen: Writing - Original Draft Preparation, Writing - Review & Editing.14

Correspondence concerning this article should be addressed to Hudson Golino, 48515

McCormick Road, Gilmer Hall, Room 102, Charlottesville, VA 22903. E-mail:16

hfg9s@virginia.edu17

mailto:hfg9s@virginia.edu


THE ERGODICITY INFORMATION INDEX 2

Abstract18

In the last half of the 20th century, psychology and neuroscience have experienced a renewed19

interest in intraindividual variation. To date, there are few quantitative methods to evaluate20

whether a population structure (between-person) is likely to hold for individual people. We21

present a network information theoretic approach to evaluate the extent to which a system22

possesses the ergodic property. We introduce a new metric, the ergodicity information index23

(EII), that can inform whether a set of multivariate time series (or a set of intensive24

longitudinal measures) should be represented as multiple individual structures or as a single25

population structure. The EII index quantifies the amount of information lost by26

representing all individuals with a single population structure. If the individuals don’t have a27

similar structure, representing them with a single population network leads to a loss of28

information. The EII index value will be higher than in cases where all individuals have a29

similar structure. A Monte-Carlo simulation is implemented to test the EII index, and the30

results show that the new index has a 94% accuracy in differentiating data in which all31

individuals have a similar structure vs. data in which the individuals don’t have a similar32

structure. The paper also presents two new techniques designed to help applied researchers33

to analyze data when the ergodicity property does not hold. The EII bootstrap test obtains34

a sampling distribution of EII values as if all participants in the data have the population35

network structure and compare this null distribution to the empirical EII value. Significant36

differences indicate that the empirical data cannot be expected to be generated from an37

ergodic process, and the population structure is not sufficient to describe all individuals. The38

Domenico clustering method estimates the Von Neumann entropy of two networks and39

computes their Jensen-Shannon Distance (JSD). Then, a complete-linkage agglomerative40

hierarchical clustering method is applied to the JSD, and the clustering partitioning is41

obtained via modularization maximization. The Domenico clustering method allows the42

discovery of groups of individuals with a similar structure. Finally, two empirical examples43

are shown, one using data from an intensive longitudinal experience sampling study44
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examining Big Five personality measured by the Big Five Inventory-2, and the other using45

resting state neuroimaging data taken from a study examining creativity which used the46

268-node Shen brain atlas. Starting with personality, the bootstrap EII test was significant,47

suggesting that the BFI-2 data were nonergodic. Following up on the bootstrap EII test, the48

information clustering was applied, and the single cluster test was performed. The single49

cluster test suggested that the empirical networks had significantly greater JSD values than50

the random networks meaning that the single cluster detected was not meaningful, and each51

individual in the sample is unique. The brain networks had a significant bootstrap EII test52

and significantly larger JSD values than random networks. These results, in line with the53

personality data, suggest that (resting state) brain networks are not ergodic, and no54

meaningful groups can be formed (i.e., each individual is unique). In sum, the personality55

and (resting state) brain networks do not possess ergodicity and therefore lose information56

when data are aggregated into a single population.57

Keywords: keywords58

Word count: X59
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Towards a psychology of individuals: the ergodicity information index and a bottom-up60

approach for finding generalizations61

62

Introduction63

In the last half of the 20th century, psychology has experienced a renewed interest in64

within-person (intraindividual) variation. One principal line of development sprang from the65

introduction of P-technique factor analysis (Cattell, Cattell, & Rhymer, 1947). P-technique66

involves the periodic collection (e.g. hourly, daily) of responses to a battery of measures67

taken from a single person as opposed to across multiple people. The variation and68

covariation of these measures are within a person (intraindividual) as opposed to the more69

common between-person variation and covariation (interindividual) studied by differential70

psychology. Although P-technique did not quickly become a standard tool for exploring71

variability, its promise and the promise of studying intraindividual variation has attracted72

increasing attention (Bereiter, 1963; Molenaar, 2004; Nesselroade & Ford, 1985). Today,73

there is a considerable amount of research collecting data on intraindividual variability (Beck74

& Jackson, 2022; e.g., ; Diehl, Hooker, & Sliwinski, 2014; Fisher, Reeves, Lawyer, Medaglia,75

& Rubel, 2017; Gomes & Golino, 2015; Hultsch, Strauss, Hunter, & MacDonald, 2008; Ram,76

Gerstorf, Lindenberger, & Smith, 2011), clearly having an impact on the field.77

The re-emergence of within-person research, in an arena long dominated by78

between-person research, is not surprising. The accessibility of new technologies that are79

able to capture intraindividual variability (e.g., smartphones) has enabled researchers80

unparalleled opportunity to study a person rather than people. Intraindividual and81

interindividual variability has often been cast in terms of the idiographic versus nomothetic82

debate (see e.g., Lamiell, 1998). The recognition of these important thrusts has several83

consequences. There is an obvious need to formalize the definitions of both conceptions, and84
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to do it in such a way that they can be readily distinguished at the conceptual level while85

also highlighting their relation to each other (e.g., Molenaar, Huizenga, & Nesselroade, 2003;86

Oertzen, Schmiedek, & Voelkle, 2020; Schmiedek, Lövdén, Oertzen, & Lindenberger, 2020;87

Wright & Zimmermann, 2019).88

Accompanying that effort, ways to distinguish between, and capitalize on the two kinds89

of variation in empirical data must also be created and made operational. For example, to90

what extent can we expect to characterize the way individuals differ from each other with91

the same structures that characterizes how a person changes over time? This question harks92

back to the old debate in developmental psychology about the relative merits of93

cross-sectional versus longitudinal research designs and whether cross-sectional data can be94

relied on to furnish accurate information regarding change over time at the individual level.95

More recently, the ergodic property has surfaced in this context as a condition under96

which one can expect within-person and between-person structures to match (Fisher,97

Medaglia, & Jeronimus, 2018). If a system’s process is ergodic, between-person structures98

can be used to represent within-person structures (Molenaar et al., 2003) but, among99

developmental psychologists at least, there seems to be little reason to think that ergodicity100

will be a property of many (if any) developmental processes. To date, there are few101

quantitative methods to evaluate whether a between-person structure is likely to hold for102

individual people—that is, whether the system possesses the ergodic property. In the present103

research, we present an information theoretic approach to evaluate the extent to which a104

system possesses the ergodic property. From an information theoretic perspective, the105

ergodic property can be framed in terms of the amount of information lost representing a set106

of measures as a single between-person structure (nomothetic structure) instead of as107

multiple within-person structures (within-person and idiographic structures).108

Techniques to analyze complex systems with dynamic interactions between variables109

have a long history in statistical physics (e.g., Jaynes, 1957) and psychology (Boker, 2018;110
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Cattell, 1965; Guttman, 1953), culminating in modern approaches such as network science111

(Epskamp & Fried, 2018; Epskamp, Waldorp, Mõttus, & Borsboom, 2018a). In networks,112

variables are represented as nodes (circles) and the edges (lines) between the nodes represent113

associations between variables. There are many ways to characterize complex networks114

(Newman, 2010), from the type of edge (e.g., directed or undirected, weighted or unweighted)115

to the complexity of the network (e.g., algorithmic complexity; Morzy, Kajdanowicz, &116

Kazienko, 2017; Zenil, Kiani, & Tegnér, 2018). Networks are a common method for117

representing complex systems and the interactions between their components.118

We introduce a new metric – termed ergodicity information index (EII) – that can119

inform whether a set of variables should be represented as multiple individual structures120

(multiple individual networks, multiplex networks) or as a single, between-individual121

structure (unique single network, aggregate or population network). The EII characterizes122

the relative algorithm complexity of the population structure with regard to multiple123

individual networks taking into consideration the number of underlying dimensions (e.g.,124

communities, latent factors). Algorithm complexity of multiplex networks can be used to125

determine the optimal number of layers needed to represent a multiplex network and to126

detect structural and dynamical similarities among their layers (Santoro & Nicosia, 2020).127

The representation of intraindividual structures as multiplex networks and the quantification128

of their information relative to a single, population network structure are two central ideas in129

the development of our EII.130

The paper is organized as follows. The first section briefly introduces how131

intraindividual and interindividual structures can be estimated in a single framework using132

dynamic exploratory graph analysis (DynEGA; Golino, Christensen, Moulder, Kim, & Boker,133

2022), an approach that combines generalized local linear approximation (Boker, Deboek,134

Edler, & Keel, 2010) and exploratory graph analysis (Golino & Epskamp, 2017; Golino, Shi,135

et al., 2020) to estimate dynamical factors in (intensive) longitudinal measures at different136

levels of analysis (individual, group, and/or population). In this section, we reframe the137
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within- and between-person problem from a network perspective in which the intraindividual138

structures are represented as a multiplex network (i.e., a collection of individual networks),139

and the interindividual structure as a single (population) network.140

In the second section, we develop the EII, introducing information theoretic concepts141

such as algorithm complexity that are necessary to define its meaning and interpretation.142

Next, a Monte Carlo simulation study is implemented to investigate the accuracy of the EII143

to differentiate between within- and between-person structures. Afterwards, we introduce an144

information theoretic approach to clustering, which can be used if the system is determined145

to be nonergodic.146

Finally, one synthetic and two empirical examples from personality and neuroscience147

will be used to demonstrate how the EII can be used to determine whether a system148

possesses the ergodic property, and determine ergodic clusters (or groups) when the system149

is not. These new techniques are a step forward in the psychology of individuals, enabling150

the identification of generalizable constructs using a bottom-up approach (from individuals151

to group of individuals with common network characteristics).152

Representing intraindividual and interindividual structures as networks153

To reframe the within- vs. between-person problem using a information theoretic154

network approach, we first need to show how networks can be estimated in (intensive)155

longitudinal data in a way that can generate both multiplex networks for the individuals156

(i.e., multiple individual, within-person networks) and a single population or between-person157

network. Recently, Golino et al. (2022) introduced a technique termed dynamic exploratory158

graph analysis (DynEGA), combining techniques from dynamical systems (i.e., time-delay159

embedding and generalized local linear approximation; Boker et al., 2010) and exploratory160

graph analysis (Golino & Epskamp, 2017; Golino, Shi, et al., 2020) – a network psychometric161

approach for dimensionality assessment and reduction. The DynEGA technique can be used162
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to estimate dynamical communities (e.g., latent factors) in (intensive) longitudinal measures163

at different levels of analysis (individual, group and/or population).164

Network models have been proposed in psychological research for decades (e.g.,; Boker,165

2018; Cattell, 1965; Guttman, 1953). More recently, a number of developments in network166

modeling in psychology originated a new area termed network psychometrics (Epskamp,167

2018) that relies mostly on the Gaussian graphical model (GGM; Lauritzen, 1996).168

Assuming multivariate normality, a GGM can be obtained by modeling the inverse of the169

variance-covariance matrix (and standardizing it to obtain partial correlations) in a way that170

non-zero elements are freely estimated (Epskamp et al., 2018a), generating a sparse model of171

the variance-covariance matrix (Epskamp, Rhemtulla, & Borsboom, 2017). As Epskamp et172

al. (2018a) note, inverting and standardizing the variance-covariance matrix won’t lead to173

partial correlations that are exactly zero, meaning that the GGM is saturated.174

Regularization techniques, such as a variant of the least absolute shrinkage and selection175

operator (LASSO; Tibshirani, 1996) termed graphical LASSO (GLASSO; Friedman, Hastie,176

& Tibshirani, 2008), are generally used in network psychometrics (Epskamp & Fried, 2018;177

see; Epskamp et al., 2018a).178

The GLASSO is a technique that is very fast to estimate both the model structure and179

the parameters of a sparse GGM (Epskamp, Waldorp, Mõttus, & Borsboom, 2018b). It has180

a tuning parameter (γ), that can be chosen in a way to minimize the extended Bayesian181

information criterion (EBIC; Chen & Chen, 2008), which is used to estimate optimal model182

fit and has been shown to accurately retrieve the true network structure in simulation183

studies (Epskamp & Fried, 2018; Foygel & Drton, 2010; Williams & Rast, 2020; Williams,184

Rhemtulla, Wysocki, & Rast, 2019).185

The most used network estimation approach in psychological research (termed186

EBICglasso) is implemented in the qgraph package (version 1.4.1; Epskamp, Cramer,187

Waldorp, Schmittmann, & Borsboom, 2012). The EBICglasso function (Epskamp et al.,188
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2012) samples 100 logarithmically-spaced values of λ, following Foygel and Drton (2010).189

The ratio range of λ can be set by the user (defaults to 0.01). γ controls the severity of the190

model selection (defaults to 0.50). EBIC is computed for values of gamma larger than zero,191

and the value of λ that minimizes this information criteria is selected, generating a network192

with regularized edges.193

Network psychometrics on cross-sectional data has progressed into dimensionality194

assessment, where networks are estimated using the GGM or other network techniques (see195

Golino, Shi, et al., 2020) and an algorithm for detecting communities in weighted networks196

(Walktrap; Pons & Latapy, 2005) is used to identify latent factors. Golino and Epskamp197

(2017) called this approach exploratory graph analysis (EGA). Simulation studies have found198

EGA to perform as well as the most accurate factor analytic method, parallel analysis, and199

produce the best large-sample properties of all the methods evaluated (Golino & Epskamp,200

2017; Golino, Shi, et al., 2020).201

In (intensive) longitudinal data, EGA can be used, but instead of using the202

variance-covariance matrix of the raw data, it uses the variance-covariance of m-order203

derivatives. The resulting network structure (GGM of the m-order derivatives) conveys204

information on how variables are changing over time. As a result, the communities identified205

using the Walktrap algorithm reflect not simple, static factors, but dynamical factors of206

nodes that are fluctuating similarly as a function of time. Golino et al. (2022) called this207

technique the dynamic exploratory graph analysis (DynEGA), merging network208

psychometrics, dynamical systems modeling, and dimensionality assessment into a single209

framework that can estimate structures at the individual or group/population levels.210

DynEGA starts by transforming the time series of each variable V = {v1, v2, ..., vN}211

into a time delay embedding matrix X(n), where n is the number of embedding dimensions.212

As pointed by Golino et al. (2022), a time delay embedding matrix is used to reconstruct the213

attractor of a dynamical system using a single sequence of observations (Takens, 1981;214
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Whitney, 1936), preserving the phase-space dynamics of the system. In the time delay215

embedding matrix, each row is a phase-space vector (Rosenstein, Collins, & De Luca, 1993):216

X = [X1 X2 ... XM ]′ , (1)

where Xi is the state of the system at discrete time i and is given by:217

Xi =
[
xi xi+τ ... xi+(n−1)τ

]
, (2)

where τ is the number of observations to offset successive embeddings (i.e., lag or218

reconstruction delay) and n is the embedding dimension. The time-delay embedding matrix219

is a M × n matrix, where M = N − (n − 1)τ and N is the number of time points.220

Once the time series of each variable collected in an (intensive) longitudinal study and221

transformed into a time-delay embedding matrix X(n), derivatives can be estimated using222

generalized local linear approximation (Boker et al., 2010; GLLA; Deboeck, Montpetit,223

Bergeman, & Boker, 2009). Derivatives can represent different aspects of change such as the224

rate of change or velocity at which the variable is changing over time (first-order derivatives)225

and the speed of the rate of change or acceleration (second-order derivatives).226

Deboeck et al. (2009) and Boker et al. (2010) show how derivatives can be estimated227

in the GLLA framework:228

Y = XL(L′L)−1, (3)

where Y is a matrix of derivative estimates, X is a time delay embedding matrix (with229

n embedding dimensions; to simplify the notation, X = X(n)), and L is a matrix with the230

weights expressing the relationship between the embedding matrix and the derivative231

estimates. The weight matrix L is a n × α matrix, where n is the number of embedding232
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dimensions and α is the (maximum) order of the derivative. Each column of the weight233

matrix is estimated as follows, considering the order of the derivatives going from zero to k,234

α = [0, 1, ..., k]:235

Lα = [∆t(v − v̄)]α
α! (4)

where ∆t is the time between successive observations in the time series, v is a vector236

from one to the number of embedded dimensions (i.e., v = [1, 2, ...n]), v̄ is the mean of v, α237

is the order of the derivative of interest, and α! is the factorial of α.238

After estimating the derivatives for all time series (i.e., all variables), EGA is used to239

estimate the multiplex networks (intraindividual or within-person structures). In this240

process, each matrix of derivatives will generate a different network and dimensionality241

structure (represented by clusters of nodes in the network) for each individual. The242

population (between-person or nomothetic) structure can be estimated by stacking the243

derivative matrix of each individual (i.e., row-binding the matrices) and applying EGA to the244

stacked matrix. In both cases (i.e., individual or population structures), the resulting clusters245

in the networks corresponds to variables that are changing together (Golino et al., 2022).246

An example illustrates how this technique works: Suppose we ask two people to answer247

eight items of depression once a day for 100 days. After applying DynEGA to the data, we248

would obtain three important types of information (see Figure 1): the derivatives for the249

eight variables, the network structure for each person (intraindividual), and the network250

structure of the two people combined (interindividual). The left side of Figure 1 shows the251

time series of first-order derivatives while the network structure of each individual are at the252

center (top and bottom represents subject one and two, respectively). The interindividual253

network structure is depicted in the right side of Figure 1. As can be seen in the network254

structure of person one (top network at the center of Figure 1), the pair of nodes pink and255

green are not connected (i.e. there is no edge linking these pairs of nodes). However, the256
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same pair of nodes are connected in the network structure of person two (bottom network at257

the center of Figure 1), and in the between-individual network structure (or population258

network) depicted at the right side of Figure 1. A question that must be answered now is:259

how much information is being lost by representing the structure of the two individuals as a260

single, interindividual network, relative to representing them as a multiplex network? Can261

the derivatives of person one and two be stacked to estimate a single network or by doing so,262

is important information about each individual lost? The next section aims to answer these263

questions and to introduce the ergodicity information index.264
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Figure 1

The Ergodicity Information Index265

The individual networks and population network in Figure 1 can be compared in terms266

of their algorithm complexity. Algorithm complexity can be used to analyze complex objects267

in an unbiased manner using mathematical principles (Zenil et al., 2018), and is based on the268
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work of Kolmogorov (1968), Martin-Löf (1966), Solomonoff (1964) and others. As Zenil et al.269

(2018) and Morzy et al. (2017) show, the algorithm (or Kolmogorov) complexity of a string s270

is formally defined as:271

Ks = min(|P | , T (P ) = s)

where P is a program producing the string s when running on a universal Turing272

machine T, and |P | is the number of bits required to represent P (i.e., the length of P). A273

Turing machine is a formal model of a general-purpose computer that can be programmed to274

reproduce any computable object, such as a string (Zenil et al., 2018). The Kolmogorov275

complexity of a string is defined, in other words, as the length of the shortest possible276

program that can produce that string as its output (Santoro & Nicosia, 2020). Kolmogorov277

complexity has a drawback of being incomputable (Zenil et al., 2018), since there is no way278

to estimate the number of possible programs that could produce the string s (Kolmogorov,279

1968). But it can be approximated by using compression algorithms (Morzy et al., 2017;280

Santoro & Nicosia, 2020), in which the compressed string s is an estimate of Ks.281

To obtain an estimation of Kolmogorov complexity in networks, the most common282

approach is to compute the size of the compressed weighted edge list (Santoro & Nicosia,283

2020). For single, unique networks, this is straightforward, but for multiplex networks, the284

Kolmogorov complexity requires a strategy to encode all individual graphs into a single285

network. Santoro and Nicosia (2020) proposed the use of a prime-weight encoding matrix Ω286

that assigns a distinct prime number (p[α]) to each individual network (i.e., each of the A287

layers of the multiplex networks) and sets each element Ωij equal to the product of the288

primes associated to the layers where an edge between node i and j exists:289
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Ωij =


∏

α:α[α]
ij =1

p[α]

0 if α
[α]
ij = 0 ∀ α = 1, . . . , A

(5)

Person 1

Person 2

Prime−weight encoding of the individual networks

Figure 2

Santoro and Nicosia (2020) proposed a new metric for quantifying the algorithm290

complexity of multiplex networks that can be computed as the ratio of the (approximate)291

Kolmogorov complexity of the prime-weight matrix Ω of a multiplex network with A layers292

and the Kolmogorov complexity of an aggregated network combining all layers.293

A similar strategy can be followed to quantify the algorithm complexity of the294

networks estimated using DynEGA. The multiplex networks are all individual networks295

estimated using the derivatives computed via generalized local linear approximation in the296

DynEGA technique. Instead of comparing the algorithm complexity of Ω with an weight297

aggregation of the multiplex networks, it is more informative to compare it with the298
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population network (i.e., the network estimated stacking the derivatives estimated using299

generalized local linear approximation for all individuals). Additionally, in psychology, it is300

also important to consider the number of latent factors underlying the intensive-longitudinal301

data. Therefore, our ergodicity information index can be computed as:302

ξ =
√

FP

(
(KΩ)
KP ∗

)
log(Lχ)



where
√

FP is the square-root of the number of factors estimated in the population structure303

using dynamic exploratory graph analysis, KΩ is the algorithm complexity of the304

prime-weight encoding matrix of the individual networks (that composes the multiplex305

network χ), KP ∗ is the algorithm complexity of the prime-weight transformation of the306

population network (i.e., each element in the population network, Pij, is transformed such307

that Pij∗ = 2Pij ),and Lχ is the number of distinct edges across the networks that make up308

the multiplex network (i.e., non-zero edges).309

The EII (ξ) computes the amount of information lost representing a set of measures as310

a single interindividual structure (nomothetic structure) instead of representing the measures311

as multiple individual structures (within-person or intraindividual structures). Larger values312

of the ergodicity information index indicate that the intraindividual networks encode a313

relatively larger amount of information with respect to the population network.314

The ratio (KP ∗)
KΩ

is normalized by the number of distinct edges in the multiplex network315

(set of individual networks) because a set of networks with larger number of edges is316

expected to have a higher complexity. Similar to Santoro and Nicosia (2020), we317

implemented a canonical prime association to compute ξ. In canonical prime association,318

prime numbers are associated to layers in increasing order of their total number of edges.319

In terms of estimation, the Kolmogorov complexity is estimated for each network (i.e.,320

prime-weight transformation of the population network P∗ and the prime-weight encoding of321
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the multiplex networks Ω) as the length of the compression of the string formed by their322

edge list, using the Gzip compression algorithm available in the memCompress function of323

base R (R Core Team, 2017). In theory, Kolmogorov complexity can also be computed using324

other representations of the network such as a string composed by the rows of the Laplacian325

matrix, degree list, degree distribution, or weights list (Morzy et al., 2017). In this paper, we326

focus mainly on the algorithm complexity estimated using the weights list, and compare it to327

the estimation using the edge list. Since Kolmogorov complexity is affected by the order of328

elements in the edge list, the final estimation of algorithm complexity is based on the mean329

of 1,000 computations of K over an edge list randomly ordered. One advantage of using330

Kolmogorov complexity to estimate the complexity of networks is that it is less dependent on331

the network representation than other metrics of complexity such as entropy-based metrics332

(Morzy et al., 2017).333

The use of the EII implies a different type of ergodicity that we call super-weak334

ergodicity. In a strict definition of ergodicity, there are two central requirements: stationarity335

for all participants and homogeneity for all time points (Voelkle, Brose, Schmiedek, &336

Lindenberger, 2014). A softer type of ergodicity termed weak ergodicity, requires only that337

the marginal distributions for all participants and for all time points be identical (Oertzen et338

al., 2020). The super-weak ergodicity, on the other side, doesn’t require stationarity for all339

participants (i.e., the same covariance matrix for all subjects), homogeneity for all time340

points (i.e., the same covariance matrix across time), or an equal marginal distributions for341

all participants and time points. It requires a much weaker condition: the algorithm342

complexity of the population (or between-person) network be similar (but not equal) to the343

algorithm complexity of the prime-weight encoded network of all individuals.344

Suppose we have four people that are assessed using an eight-item questionnaire for345

100 days. Persons one and two are more similar than persons three and four, although none346

of them are exactly equal to one another. DynEGA is used to compute the first-order347

derivatives for each variable and to generate a network for each individual, and two348
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between-person or population networks: one for persons one and two, and one for persons349

three and four. If we calculate the correlation of the derivatives for each variable, none of350

them are exactly equal to the others. Figure 3 shows the heatmap of the correlation matrices351

(calculated using the first-order derivatives of each variable) and the resulting network352

structure for each person and each population with node colors representing the estimated353

latent factors.354

Two factors were identified in individuals one, two and three, and four factors were355

identified in individual four. The population network for persons one and two indeed shows356

two factors, while the population network for persons three and four shows four factors, both357

estimated using DynEGA. Calculating the ergodicity information index (ξ), we obtain ξ =358

1.14 for individuals one and two and ξ = 1.29 for individuals three and four. Therefore, more359

information is lost by representing the eight measures as a single structure for individuals360

three and four (bottom of Figure 3, population 2) than for individuals one and two (top of361

Figure 3, population 1). Another way to interpret the results above is that the362

intraindividual networks for individuals three and four encode a relatively larger amount of363

information with respect to the population network, compared to individuals one and two364

and their population structure.365

Simulation Design366

To verify the suitability of the ergodicity information index to identify if intensive367

longitudinal measures should be represented as a set of within-person structures (multiple368

individual networks) or as a single, between-person or population structure (only one369

network), a Monte Carlo simulation is implemented. Four data conditions were370

systematically manipulated: sample size (10, 50 and 100), number of time points (50 and371

100), number of variables per factor (4 and 6) and number of factors (2, 3). Two separate set372

of conditions were used in the simulation. In the first, all individuals had the same number373

of factors (Eq condition). Therefore, representing these individuals using a single population374
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structure is reasonable. In the second set of conditions, half of the subjects had the same375

number of factors (and variables per factor) as condition one, but the other half had a376

different configuration, with more or less factors (NotEq condition).377

The sample sizes were selected to reflect low, moderate, and high samples, consistent378

with many empirical papers using an intensive longitudinal measurement design that379

typically don’t use data from more than 100 individuals (Liu, Zhou, Palumbo, & Wang, 2016;380

Schmiedek, Lövdén, & Lindenberger, 2020). Regarding the number of time points and factor381

loadings (set to unity), they were selected based on the conditions tested by Zhang,382

Hamaker, and Nesselroade (2008). In terms of the number of variables per factor, three are383

the minimum required for factor identification (Anderson, 1958). In the present simulation,384

the number of items were selected to reflect adequate (4) and slightly overindentified (6)385

factors (Velicer, 1976; Widaman, 1993). The measurement error covariance matrix had 0.1 in386

the diagonal, so we could see how the EII works under minimum error conditions. This387

strategy allows for the impact of the other variables systematically manipulated in the388

simulation to be better understood.389

The autoregression coefficients of the DFAS were set to 0.1, 0.4, and 0.8, representing a390

low, moderate, and high autoregressions. Additionally, two conditions were held constant:391

the matrix with autoregressive (0.8) and cross-regressive coefficients (0), and the covariance392

matrix for the random shock (off-diagonal = 0.18; diagonal = 0.36). The values of the393

cross-regressive coefficients and the random shock matrix were selected following Zhang et al.394

(2008).395

Data Generation396

In the Monte Carlo simulation, 500 data matrices were generated for each combination397

of variables (number of factors, number of variables per factor, number of time points,398

sample size, autoregression coefficients) according to the DAFS model. First, the matrix of399
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random shock vectors vt was generated following a multivariate normal distribution with400

mean zeros and q × q covariance matrix D (off-diagonal values = 0.18; diagonal values =401

0.36), where q is the number of factors and t is the number of time points plus 1,000 (used as402

the burn-in estimates for the Markov chain). Second, the factor scores are calculated and the403

first 1,000 estimates are removed (burn-in phase). Third, the measurement error matrix is404

estimated following a multivariate normal distribution with mean zeros and p × p covariance405

matrix Q, where p is the total number of variables (number of variables per factor times F ).406

Finally, the observed variables Obst at time t (t = 1, 2, ..., N) are calculated using the407

following equation 6.408

Obst = ΛFt + et, (6)

where Λ is the factor loading matrix (p × q), Ft is a q × 1 vector of factors at time t,409

and et is a p × 1 vector with measurement errors following a multivariate normal distribution410

with mean zeros and covariance matrix Q (Nesselroade, McArdle, Aggen, & Meyers, 2002;411

Zhang et al., 2008).412

The factor scores, Ft, are calculated as follows:413

Ft =
L∑

l=1
BlFt−l + vt (7)

where Bl is a q × q matrix of autoregressive and cross-regressive coefficients, Ft−l is a414

vector of factor score l occasions prior to occasion t and vt is a random shock vector (or415

innovation vector) following a multivariate normal distribution with mean zeros and q × q416

covariance matrix D (Nesselroade et al., 2002; Zhang et al., 2008). In the DAFS model, Λ,417

Bl, Q and D are invariant over time.418

Data following the DAFS model can be simulated using the simDFM function of the419

EGAnet package (version 1.2.0; Golino & Christensen, 2019).420
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Results421

Table 1
Accuracy per conditions tested

N TimeP NFAC NVAR NFAC2 NVAR2 Autoreg Accuracy Lower 95% C.I Upper 95% C.I

10 50 2 4 4 2 0.1 75.00 72.31 77.69

10 50 2 4 4 2 0.4 91.30 89.55 93.05

10 50 2 4 4 2 0.8 98.70 98.00 99.40

10 50 2 6 3 4 0.1 100.00 100.00 100.00

10 50 2 6 3 4 0.4 100.00 100.00 100.00

10 50 2 6 3 4 0.8 100.00 100.00 100.00

10 50 3 4 2 6 0.1 74.40 71.69 77.11

10 50 3 4 2 6 0.4 68.20 65.31 71.09

10 50 3 4 2 6 0.8 68.90 66.03 71.77

10 50 3 6 2 9 0.1 78.50 75.95 81.05

10 50 3 6 2 9 0.4 90.30 88.46 92.14

10 50 3 6 2 9 0.8 98.80 98.12 99.48

10 100 2 4 4 2 0.1 70.00 67.15 72.85

10 100 2 4 4 2 0.4 93.50 91.97 95.03

10 100 2 4 4 2 0.8 99.70 99.36 100.04

10 100 2 6 3 4 0.1 100.00 100.00 100.00

10 100 2 6 3 4 0.4 100.00 100.00 100.00

10 100 2 6 3 4 0.8 100.00 100.00 100.00

10 100 3 4 2 6 0.1 83.60 81.30 85.90

10 100 3 4 2 6 0.4 83.20 80.88 85.52

10 100 3 4 2 6 0.8 83.78 81.49 86.07

10 100 3 6 2 9 0.1 82.40 80.04 84.76

10 100 3 6 2 9 0.4 96.90 95.82 97.98

10 100 3 6 2 9 0.8 99.90 99.70 100.10

50 50 2 4 4 2 0.1 66.10 63.16 69.04

50 50 2 4 4 2 0.4 97.90 97.01 98.79
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Table 1
Accuracy per conditions tested (continued)

N TimeP NFAC NVAR NFAC2 NVAR2 Autoreg Accuracy Lower 95% C.I Upper 95% C.I

50 50 2 4 4 2 0.8 99.90 99.70 100.10

50 50 2 6 3 4 0.1 100.00 100.00 100.00

50 50 2 6 3 4 0.4 100.00 100.00 100.00

50 50 2 6 3 4 0.8 100.00 100.00 100.00

50 50 3 4 2 6 0.1 95.90 94.67 97.13

50 50 3 4 2 6 0.4 95.30 93.99 96.61

50 50 3 4 2 6 0.8 94.50 93.08 95.92

50 50 3 6 2 9 0.1 86.60 84.49 88.71

50 50 3 6 2 9 0.4 99.80 99.52 100.08

50 50 3 6 2 9 0.8 100.00 100.00 100.00

50 100 2 4 4 2 0.1 66.80 63.88 69.72

50 100 2 4 4 2 0.4 99.20 98.65 99.75

50 100 2 4 4 2 0.8 100.00 100.00 100.00

50 100 2 6 3 4 0.1 100.00 100.00 100.00

50 100 2 6 3 4 0.4 100.00 100.00 100.00

50 100 2 6 3 4 0.8 100.00 100.00 100.00

50 100 3 4 2 6 0.1 99.80 99.52 100.08

50 100 3 4 2 6 0.4 99.90 99.70 100.10

50 100 3 4 2 6 0.8 99.50 99.06 99.94

50 100 3 6 2 9 0.1 96.60 95.47 97.73

50 100 3 6 2 9 0.4 100.00 100.00 100.00

50 100 3 6 2 9 0.8 100.00 100.00 100.00

100 50 2 4 4 2 0.1 69.80 66.95 72.65

100 50 2 4 4 2 0.4 99.40 98.92 99.88

100 50 2 4 4 2 0.8 100.00 100.00 100.00

100 50 2 6 3 4 0.1 100.00 100.00 100.00

100 50 2 6 3 4 0.4 100.00 100.00 100.00
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Table 1
Accuracy per conditions tested (continued)

N TimeP NFAC NVAR NFAC2 NVAR2 Autoreg Accuracy Lower 95% C.I Upper 95% C.I

100 50 2 6 3 4 0.8 100.00 100.00 100.00

100 50 3 4 2 6 0.1 100.00 100.00 100.00

100 50 3 4 2 6 0.4 99.90 99.70 100.10

100 50 3 4 2 6 0.8 100.00 100.00 100.00

100 50 3 6 2 9 0.1 95.80 94.55 97.05

100 50 3 6 2 9 0.4 100.00 100.00 100.00

100 50 3 6 2 9 0.8 100.00 100.00 100.00

100 100 2 4 4 2 0.1 72.75 69.98 75.51

100 100 2 4 4 2 0.4 99.90 99.70 100.10

100 100 2 4 4 2 0.8 100.00 100.00 100.00

100 100 2 6 3 4 0.1 100.00 100.00 100.00

100 100 2 6 3 4 0.4 100.00 100.00 100.00

100 100 2 6 3 4 0.8 100.00 100.00 100.00

100 100 3 4 2 6 0.1 100.00 100.00 100.00

100 100 3 4 2 6 0.4 100.00 100.00 100.00

100 100 3 4 2 6 0.8 100.00 100.00 100.00

100 100 3 6 2 9 0.1 99.60 99.21 99.99

100 100 3 6 2 9 0.4 100.00 100.00 100.00

100 100 3 6 2 9 0.8 100.00 100.00 100.00

Table 1 and 4 show the mean accuracy per condition tested and the 95% confidence422

interval of the mean. Mean accuracy is defined as the average (across 500 simulated datasets423

per condition) number of times the EII was larger for the NotEq condition than for the Eq424

condition (in a scale from 0 to 100%). The grand mean accuracy was very high (Mean =425

94.07%, SD = 23.62). The accuracy increases with an increase in the sample size, number of426

variables per factor, and as a function of the autoregressive parameter. When the number of427
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factors is two, the EII presented a moderate accuracy for an autoregressive parameter of .1,428

with only four variables per factor. As the number of variables per factor increased to six,429

the accuracy was perfect. This is likely due to the configuration of the second group of430

individuals in the NotEq condition. When the number of factors is two in the first group431

with four variables per factor, the second group had four factors, each with two variables432

only (total number of variables = 8). Increasing the number of variables to six in the first433

group (with two main factors) means that the second group could have three factors with434

four variables or four factors with three variables each (total number of variables = 12). So,435

the six variables condition had better identified factors than the four variables condition436
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when the number of factors equals two for the second group of the NotEq condition. For the437

three factors condition, sample size was more impactful when the number of variables is set438

to four, and the autoregressive parameter was more impactful in the conditions with six439

variables per factor.440

Figure 5 shows the mean EII value per sample size, number of factors, number of441

variables per factor, number of time points, and autoregressive parameter. Overall, the mean442

EII of the NotEq condition is much higher than the mean of the Eq condition, showing that443

the metric can reliably differentiate when the individuals have a similar structure compared444

to when individuals have a different structure. This is an important evidence of the445

reliability of the EII to capture the amount of information lost by representing a set of446

measures as a single population (or interindividual) structure instead of representing the447

measures as multiple individual structures.448

Figure 6 shows the distribution of the EII value per number of factors and number of449

variables per factor (of the first group of individuals). Finally, Figure 7 shows the450

distribution of the EII value per number of variables per factor in the first group (rows) and451

in the second group of individuals (columns).452

A bottom-up approach for finding generalizations453

If the system is nonergodic, what then? From Figure 3, it’s reasonable to think that454

elements of the network structure estimated for each individual can be used to search for455

similarities that could help uncover sub-groups of people or generalizable characteristics456

across individuals. Said differently, uncovering sub-groups could reveal ergodic systems457

underlying the overall system. Since Campbell and Stanley (1963) raised concerns regarding458

external validity in psychological research, generalizability hasn’t received nearly enough459

attention (Yarkoni, 2022).460

The emphasis on generalizability has both weaknesses and strengths in the directions461
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number of variables per factor (columns)

in which it has helped push research design and data analysis. Among the negatives, an462

emphasis on drawing large, representative samples of participants has, to our way of463

thinking, been detrimental to the study of complex psychological processes. The primary464

reason for this assertion is that to the extent that processes are constructs, they may well465

manifest themselves somewhat differently from individual to individual (Molenaar &466

Nesselroade, 2012) making it meaningless to build an accurate representation of the process467

with observable measures. Here, heterogeneity is not helpful. If one is trying to determine468

the average number of bedrooms in single family dwellings in the U.S., then a truly469

representative sampling of single family dwellings is highly desirable. But if one is trying to470

determine the nature of the onset and progression of depression, a representative sample that471
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includes a variety of paths of onset and progression is not helpful and may aggregate over472

paths to a point where the representation does not match any person in the sample.473

In arguing for a “bottom-up” approach to the matter of generalizability, Nesselroade474

and Molenaar (2016) argued: “It seems far more appropriate to apply tools that emphasize475

first understanding individuals well and then identifying similarities across persons, thus476

accruing generalizability gradually than initially fitting models to heterogeneous samples in477

order to claim generalizability. Large, diverse samples of individuals may put a gleam in a478

demographer’s eye but a wide array of observed differences, however universal the underlying479

mechanisms may be, can blind the behavioral scientist to the identification of general480

processes (p.15).” Following this line of reasoning, we propose an approach that takes into481

consideration the spectral properties of the individual network structures in the search for482

sub-groups or generalizable characteristics using an information-theoretic metric to compare483

the similarity between two structures.484

Spectral properties of a network provide insights into not only the topological features485
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(i.e., connectivity between nodes) but also the community structure (Chauhan, Girvan, &486

Ott, 2009) and temporal dynamics (Almendral & Dıaz-Guilera, 2007). Recent work has487

taken advantage of these properties to determine whether individual networks in a multiplex488

network can be aggregated into groups (De Domenico, Nicosia, Arenas, & Latora, 2015). De489

Domenico et al. (2015) proposed a multiplex network reduction approach by computing Von490

Neumman entropy of two networks and computing their Jensen-Shannon Distance (see491

Golino, Moulder, et al., 2020 for other applications of Von Neumann entropy in community492

detection). Von Neumann entropy of a network can be computed as follows:493

hA = −Tr[LG log2 LG],

where LG = c × (D − A) is the combinatorial Laplacian rescaled by c or one over the494

sum of the weights in the network. D is a matrix with the strength of each node (i.e., sum of495

each node’s connections) on its respective diagonal and A is the network. LG is a density496

matrix that is then used to compute Von Neumman entropy:497

hA = −
N∑

i=1
λi log2(λi),

where λ are the eigenvalues of LG. Using Von Neumann entropy of the network, we498

can compute the Jensen-Shannon Divergence between two networks, which is a symmetric499

measure of dissimilarity related to Kullback-Leibler Divergence (De Domenico et al., 2015):500

DJS(ρ||σ) = h(µ) − 1
2[h(ρ) + h(σ)],

where ρ and σ are LG of each network being compared and µ = 1
2(ρ + σ). Taking the501

square root of DJS produces a [0, 1] bound metric often referred to as Jensen-Shannon502

Distance. Subtracting 1 from the Jensen-Shannon Distance produces a similarity metric503

rather than distance metric.504
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De Domenico et al. (2015) used an entropy-based quality function and Ward’s method505

for agglomerative hierarchical clustering using the Jensen-Shannon Distance to determine506

whether individual layers (i.e., networks) in a multiplex network can be aggregated. Our507

approach follows allow similar lines: We use complete-linkage agglomerative hierarchical508

clustering on the Jensen-Shannon Distance. The trees are then cut through all possible cuts,509

obtaining as many sets of clusters as there are networks. Afterward, a similarity matrix (1 -510

Jensen-Shannon Distance) is obtained and used to compute modularity. Modularity is an511

objective function used in many community detection algorithms in network science512

(newman2006modularity?). The modularity metric quantifies the extent to which513

within-cluster similarity is maximized and between-cluster similarity is minimized. The514

clusters that maximize modularity are taken to be the groups of similar networks.515

Data from 30 individuals, with 100 measurement points each and 12 variables, were516

simulated using the direct autoregressive factor score model (DAFS; Engle & Watson, 1981;517

Nesselroade et al., 2002). The individuals differed only in the number of underlying factors518

(2, 3, or 4), forming three groups. Using DynEGA to estimate the intraindividual networks519

and computing the Jensen-Shannon Distance for every pair of networks, enabled the520

identification of three clusters of people (bottom left of Figure 8). On the top left of Figure521

8, the hierarchical clustering dendogram with three groups correctly identified. On the top522

right of Figure 8, the three different groups’ network and community structures are523

represented separately. On the bottom right of Figure 8, the population structure estimated524

using DynEGA is shown for each group of individuals.525

Testing EII and Determining Groups in Applied Examples526

Bootsrtap EII Test527

The EII provides a relative metric for the information lost when representing the528

sample as a between-person, population structure relative to within-person, individual529
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structures. Determining whether the amount of information lost is substantial requires530

understanding the information loss relative to when within-person structures match the531

between-person structure. One approach would be to generate random multivariate normal532

samples from the population structure’s covariance matrix with the same number of533

participants and their corresponding time series to create a sampling distribution of EII to534

compare with the empirical EII. This approach, however, is computationally expensive (e.g.,535

100 bootstraps × 50 participants × 20 variables × 10 time points).536

A simpler approach is to acquire a distribution of EII when individuals are known to537

be similar to the population structure. To do so, we rewire the population network structure538

to generate variants that are close but not identical to the population structure. This539

approach takes the population network structure and completely rewires an edge, randomly540

reassigning an edge connecting two nodes to two other nodes. To obtain structures with541

different levels of deviations away from the population structure, we randomly sample a542

proportion of edges to be rewired from a uniform distribution with a minimum of 0.20 (20%543

of edges) to 0.40 (40% of edges). In addition, we add random noise to all edges in the544

network randomly sampling from a uniform distribution ranging from -0.10 to 0.10. This545

process simulates small to moderate perturbations to the population structure to obtain546

structures that might be observed by individuals within a population.547

We generate as many population variants as their are participants in the empirical548

sample. With the new sample containing the population network variants, we compute EII549

with the original population network as the population network and the population network550

variants as the individuals. We repeat this process for X iterations (e.g., 100). This551

approach creates a sampling distribution of EII that would expected when the individuals in552

the population have slight deviations on the population structure. When the empirical EII is553

greater than 97.5% of the samples (two-tailed p = 0.05), then there is significant information554

lost when representing the sample as an aggregate, population network. In all other cases,555

including when the empirical EII is less than 97.5% of the sample, the ergodic property holds556
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such that non-substantial information is lost when representing the sample as an aggregate,557

population network. Applying this approach to the data generated in Figure ??, the data558

are nonergodic when combined into an aggregate population but ergodic when separated by559

cluster.560

Single Cluster Test561

If the bootstrap EII test is significant, then the next step is to determine whether there562

are clusters (or groupings) that can be identified in the data. In some cases, there may be563

mixtures of network structures that form groups of people that have similar structures. In564

other cases, each person may be unique and there are no clusters. In the latter case, a565

challenge arises: the JSD values between each network structure will be relatively566

equidistant. Because of the similar distances between networks, many clustering algorithms567

will suggest that one cluster exists. If the bootstrap EII test is significant, this result is568

paradoxical: The data do not possess the ergodic property yet they form a single cluster.569

While the bootstrap EII could be leveraged to interpret the result as the single cluster570

reflects the lack of clustering, the evidence is unsatisfying.571

We derive an additional test to determine whether a single cluster represents a single572

homogeneous cluster or if a single cluster represents heterogeneity such that each individual573

represents their own cluster (i.e., singleton clusters). This additional procedure is only574

applied when the number of clusters is determined to equal one cluster. The procedure575

begins by generating a random network with the same number of nodes and edges as each576

individual network in the empirical sample. Next, JSD is computed between every pair of577

random networks (as is done to the empirical networks). The JSD values of the empirical578

and random networks are then compared using a paired samples t-test, comparing the579

corresponding JSD values between the corresponding empirical (e.g., empirical network j and580

empirical network j) and random networks (e.g., random network i and random network j).581
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If the empirical network JSD values are, on average, greater than or equal to the582

random network JSD values, then the empirical network similarities are no different than the583

random network similarities suggesting that the single cluster is not meaningful and no584

meaningful clusters exist. If the empirical JSD values are, on average, significantly less than585

the random network JSD values (based on a large effect adjusted for sample size; Pérez &586

Pericchi, 2014), then the empirical network similarities are substantially less than the587

random networks similarities suggesting that the single cluster is meaningful.588

We performed a small simulation to determine the effectiveness of this single cluster589

test. One hundred heterogeneous samples of thirty cases with fifty time points were590

generated using the DAFS method. Each case in each sample was randomly generated with591

36 variables that loaded (between 0.70 and 1.00) onto 2, 3, 4, 6, or 9 factors with moderate592

to large error (0.20-0.50). Similarly, one hundred homogeneous samples were equivalent593

generated except that, rather than each case being generated by a different factor structure,594

all cases for each sample were generated from the same factor structure with no to moderate595

error (0.00-0.30). For the heterogeneous samples, an iteration was thrown out and replaced if596

there were two or more clusters identified. Given the conditions randomly sample from only597

five potential factor structures (with the same number of items per factor), then its possible598

that these clusters truly exist in the data and therefore are not representative of a599

heterogeneous sample. For the homogeneous samples, an iteration was thrown out and600

replaced if the bootstrap EII test was significant. The accuracy for correctly identifying601

when heterogeneous samples were heterogeneous (i.e., truly singleton clusters) was 100% and602

the accuracy for correctly identifying when homogeneous samples were homogeneous (i.e.,603

truly one cluster) was 97%.604

With this single cluster test, all evidence can be used together. If the bootstrap EII605

test is significant and the single cluster test suggests singleton clusters, then the data are not606

ergodic and they possess no meaningful groupings. If the bootstrap EII test is non-significant607

and the single cluster test suggests a single cluster, then the data are ergodic and represent a608
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single, homogeneous sample. What if the bootstrap EII test is significant and the single609

cluster test suggests a single cluster? While we expect this last circumstance to be rare, it’s610

possible. Our stance is that the default position should be to assume that the data do not611

possess the ergodic property—that is, we believe evidence must be accumulated for612

ergodicity and a homogeneous sample. In null hypothesis testing terms, the null hypothesis613

should be that the data are not ergodic and do not represent a single, homogeneous sample614

and the alternative hypothesis requiring significant evidence to the contrary.615

Empirical Examples616

To demonstrate the bootstrap EII and single cluster tests, we evaluated two empirical617

data examples that are commonly represented with an aggregate structure: personality and618

brain networks. For personality, we used an empirical example taken from an intensive619

longitudinal experience sampling study examining Big Five personality measured by the Big620

Five Inventory-2 (Beck & Jackson, 2022; Soto & John, 2017). There were 199 participants621

who completed between 1 and 158 time points. To ensure optimal data quality, we only622

included participants who completed at least 20 time points and had network densities of at623

least 0.15 (i.e., at least 15% of all possible connections present). These criteria narrowed the624

final sample to 122 participants. For the brain data, we used resting state neuroimaging data625

taken from a study examining creativity (Beaty et al., 2018), which used the 268-node Shen626

brain atlas (Shen, Tokoglu, Papademetris, & Constable, 2013). We analyzed the time series627

data of 176 participants. The resting state scan was 5 minutes in duration resulting in 150628

time points (300 seconds with TR of 2 seconds).629

Starting with personality, the bootstrap EII test was significant (EII = 1.417,630

p = 0.02, EIIbootstrap = [1.405, 1.408]) suggesting that the BFI-2 data were nonergodic.631

Following up the bootstrap EII test, the information clustering was applied and the single632

cluster test was performed. The single cluster test suggested that the empirical networks had633

significantly greater JSD values than the random networks634
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(Mdifference = 0.11, t(7380) = 66.85, p < .001, d = 1.08) meaning that the single cluster635

detected was not meaningful and each individual in the sample is unique.636

Like the personality data, the brain networks had a significant bootstrap EII test637

(EII = 6.237, p = 0.02, EIIbootstrap = [5.855, 5.943]) and significantly larger JSD values than638

random networks, Mdifference = 0.02, t(15399) = 159.28, p < .001, d = 1.78. These results, in639

line with the personality data, suggest that (resting state) brain networks are not ergodic640

and no meaningful groups can be formed (i.e., each individual is unique). In sum, the641

personality and (resting state) brain networks do not possess ergodicity and therefore lose642

information when data are aggregated into a single population.643

Discussion644

For well over a century the study of variation has been the backbone of psychologists’645

efforts to understand behavior and behavior change. Whether created via experimental646

manipulation or measured as it exists in nature (Cronbach, 1957; e.g., Cronbach, 1975),647

variation is the ore that has been dug up, assayed, weighed, and otherwise analyzed by648

behavioral prospectors hoping to strike it rich. Between-person or interindividual variation649

has been and is strongly favored in psychological research. Often, researchers infer650

within-person or idiographic processes based on between-person variation including many651

prominent theories. The reliance on interindividual variation has led to a field that appears652

to implicitly assume ergodicity is a fundamental property of psychological processes. Despite653

this ubiquitous assumption, many researchers have chosen to focus on how the behavior of654

an individual could vary from one measurement occasion to the next (Beck & Jackson, 2022;655

Fisher et al., 2018).656

Intraindividual variability is no longer studied by a curious few. It has grown into a657

prominent psychological method over the last few decades, to the point that it warrants the658

undivided attention of both methodologists and substantive theorists. This article takes659
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steps toward more rigorous testing about whether researchers can safely ignore the different660

patterns of intraindividual variability in order to construct more general interindividual661

representations. We leveraged tools from dynamical systems, network science, and662

information theory to develop tests to the determine cost of aggregation. DynEGA paired663

with GLLA allows researchers to study how variables change together over time and the664

general structure of their relations (Golino et al., 2022). The EII provides researchers with a665

relative metric and bootstrap test to determine how much information is lost when666

aggregating individuals into a single population structure and whether that amount is667

significant. If significant information is lost, then the information clustering method can be668

applied and, if necessary, a single cluster test can evaluate whether meaningful clusters exist669

in the data.670

We propose that EII quantifies the extent to which super-weak ergodicity holds in the671

system. Super-weak ergodicity suggests that the individual structures of a system should672

reflect, within reasonable error, the aggregate structure of the system. This level of673

ergodicity is a minimum requirement of a system to be represented as an aggregate. Systems674

that do not possess this property should not be aggregated because significant information is675

lost—such that a mere fraction of the system can be expected to reflect the aggregate676

system. In its present state, psychological processes are unlikely to be ergodic (Molenaar,677

2004). Therefore, the measurement of ergodicity must be pursued in perpetuity. Our678

position, as well as the position of many others (e.g., Fisher et al., 2018; Molenaar, 2004), is679

that psychological processes should be considered nonergodic until they are repeatedly680

demonstrated otherwise.681

Our empirical examples take two commonly aggregated psychological phenomena,682

personality and (resting state) brain activity, and examined the extent to which they lose683

information when aggregated into a single population network. We show, by no slim margin,684

that personality and brain networks are nonergodic. We further show that the distance685

between each individual’s structure is more than would be expected if it were generated by686
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an equivalent random structure. For personality, these result question the extent to which687

the Big Five generalize to individuals (Borkenau & Ostendorf, 1998). For brain networks,688

these results add to the growing body of evidence that dynamic brain networks reveal689

greater idiosyncrasies between people (Hutchison et al., 2013; Lurie et al., 2020). Together,690

these results suggest that each individual person shows distinct processes that are lost when691

modeled as a single aggregate structure. In short, “no two people are alike” (@ Nesselroade692

& Molenaar, 2016).693

What are the consequences of our findings? In the best case, we show that the694

personality and brain network samples examined in our study are nonergodic and are695

perhaps due to sampling variability. There are many underlying factors that make this696

interpretation plausible such as the specific personality scale used (BFI-2) or the brain697

network task (or lack of task) or the demographics of the samples (i.e., predominantly college698

students). Our findings, however, are not the first to find that individual people have resting699

state brain signatures that make them uniquely identifiable (e.g., Finn et al., 2015). In the700

worst case, we show that personality and brain activity are nonergodic and that research701

examining their aggregates, the vast majority of their literatures, rest on a faulty assumption.702

If the latter is true, then our findings challenge the validity of the conclusions drawn by703

decades of interindividual research in personality and neuroscience. Our hope is that the704

truth is somewhere in between.705

Psychology aims to understand the thoughts, emotions, and behavior of the person and706

people. Despite repeated calls and manifestos, the study of people continues to dominate707

psychology. With modern technology, everyday thoughts, emotions, and behaviors of the708

person have never been more accessible. As psychologists begin to emphasize intraindividual709

processes over interindividual predictions, statistical models that answer questions about the710

dynamics of systems are needed (Epskamp et al., 2018b; e.g., Gates & Molenaar, 2012;711

Moulder, Martynova, & Boker, 2021; Sterba & Bauer, 2010). The present work provides one712

statistical tool to understand whether intraindividual dynamics can be reasonably713
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aggregated into a single interindividual structure and another tool to determine possible714

sub-aggregations when they cannot. Together, these tools allow researchers to establish715

generalizability starting with the person rather than searching for it across people716

(Nesselroade & Molenaar, 2016).717
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