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Abstract11

Exploratory graph analysis (EGA) is used to estimate the structural organization of12

variables, uncovering latent dimensions as clusters of nodes. EGA first estimates a weighted13

network then uses the Walktrap algorithm to detect clusters of nodes. The Walktrap14

algorithm uses random walks to estimate the topography of a graph. The number of random15

walks taken (t) is typically set statically. However, the impact of t and the properties16

determining its optimization have yet to be fully researched. The present study proposes and17

tests a new approach optimizing t by iteratively varying t and employ total entropy fit index18

as a fit index to identify the number of steps that best fit the data using a Monte-Carlo19

simulation varying data structure characteristics. Results indicate that the proposed method20

is most effective for a higher number of variables per factor and when variables are21

polytomous. Varying t is important as spurious connections are introduced between22

communities. An empirical example using the Developmental Coordination Disorder23

Questionnaire is shown demonstrating improved measure interpretation by optimizing the24

Walktrap algorithm. The paper finishes with a discussion about the relevance of the findings25

and future directions for research.26

Keywords: keywords27

Word count: X28
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Optimizing Walktrap’s Community Detection in Networks Using the Total Entropy Fit Index29

Introduction30

Within psychological research, network modeling approaches have been steadily31

gaining popularity across clinical psychology (Borsboom, 2017; McNally, 2016),32

developmental psychology (Dijkstra, Cillessen, & Borch, 2013), psychopathology (Bringmann33

et al., 2013), and in particular, psychometrics (Costantini et al., 2019; Golino, Shi, et al.,34

2020; Marsman et al., 2018). Within network psychometrics, a common goal of research is to35

estimate the structural organization of variables (e.g., items in a survey or test) by36

uncovering latent dimensions as clusters of nodes in weighted networks, a general approach37

termed exploratory graph analysis (EGA; Golino & Epskamp, 2017; Christensen et al.,38

2019b, 2019c; Golino, Shi, et al., 2020). EGA is an innovative approach for dimensionality39

assessment and reduction that starts by estimating a network (Golino, Shi, et al., 2020) and40

then uses the Walktrap algorithm (Pons & Latapy, 2006) to detect clusters of nodes.41

The Walktrap algorithm is a modularity-based approach (similar to cluster analysis),42

shown to outperform other algorithms (e.g., Fast Greedy, Newman’s Spectral Approach)43

when using correlation matrices and sparse count networks (Christensen, Garrido, & Golino,44

2021; Gates, Henry, Steinley, & Fair, 2016; Orman & Labatut, 2009) and has been repeatedly45

found to successfully uncover community structure in both small and large networks (Golino,46

Shi, et al., 2020; Pons & Latapy, 2006; Yang, Algesheimer, & Tessone, 2016). In the area of47

dimensionality analysis and reduction, when EGA is used with the Walktrap algorithm, it48

has shown to perform above and beyond other methods used in factor analysis when the49

data generating mechanism is a factor model (Golino & Epskamp, 2017). These findings50

make the Walktrap algorithm an attractive choice for substantive psychological research,51

from neuroscience (Gates et al., 2016) to the study of individual differences (Golino, Shi, et52

al., 2020).53
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The Walktrap algorithm has been used in many applications in psychology. For54

example, the group iterative multilevel model estimation (GIMME) uses the Walktrap55

algorithm as a part of a process designed to recover connections and directionality within56

regions of interest from fMRI data (Gates & Molenaar, 2012). Another method focuses on57

detecting communities within networks using Cohen’s κ for clustering social network data58

(Hoffman, Steinley, Gates, Prinstein, & Brusco, 2018), while EGA aims to estimate the59

number of dimensions in multivariate data (Golino & Epskamp, 2017; Golino, Shi, et al.,60

2020). In each application, the Walktrap algorithm uses a series of random walks to define61

one important characteristic of the topography of a graph: the number and composition of62

communities (i.e., clusters of nodes or variables). The algorithm begins with a square matrix,63

the values of which indicate the relationship between units of analysis. In psychology, this64

matrix is typically made up of (partial) correlations between variables which form weighted,65

undirected graphs when modeled using network techniques.66

A network is considered to have a good community structure when the average edge67

weight within a community is higher than the edge weights between that community’s nodes68

and nodes in other communities (Newman, 2006; Pons & Latapy, 2006). The Walktrap69

algorithm capitalizes directly on this definition of good community structure by using a70

series of random walks. Starting in a given node, the algorithm repeatedly moves along the71

edges connecting that node to its neighbors. A probability function determines where it is72

more likely to “walk” to a node with a higher degree than a node with a lesser degree. In73

this way, the process will get “trapped” within a community because it is less probable for it74

to move to a node that does not belong in that community.75

The number of random walks (t) taken is generally set statically as an empirical76

compromise to computational efficiency to make sure algorithm run time is reasonable (Pons77

& Latapy, 2006). Pons and Latapy (2006) recommend taking steps t = 4 or t = 5 as the78

most computationally efficient approach with the least empirical compromise. Typically, a79
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random walk of t = 4 is used in many applications (Gates et al., 2019; Golino, Shi, et al.,80

2020). Pons and Latapy (2006) state that t must be large enough to adequately capture the81

topography of the graph, but if t is too large, then the probability of transitioning from one82

node to another depends solely on the degree of the second node. As sparsity increases, t can83

also increase as the convergence speed of the algorithm increases, and conversely t should84

decrease as density increases (Pons & Latapy, 2006). However, the impact of t and the85

properties determining its optimization have yet to be fully researched. This is especially86

pressing in the network psychometric literature which uses a range of data structures from87

many subfields of psychology, thus making a “one solution fits all” approach unlikely.88

The goal of the current paper is to propose and test a new approach to optimize the89

number of steps of the Walktrap algorithm, which could potentially improve its accuracy to90

identify groups of variables in weighted networks. Instead of using a predetermined number91

of steps, we iteratively vary the number of steps (from 3 to 10) and employ a novel fit index92

termed total entropy fit index (TEFI; Golino, Moulder, et al., 2020) to identify the number93

of steps that best fit the data. A Monte-Carlo simulation is implemented to verify if our94

optimization approach improves the capacity of the Walktrap algorithm to estimate the95

number of factors (clusters of nodes) in weighted networks. We controlled several important96

characteristics: sample size, number of variables per factor, factor loadings, interfactor97

correlation, type of variable, link probability, type of correlation and network estimation98

method. The paper is organized as follows: first we will present a general overview of99

network model estimation used in this study followed by an in depth review of the Walktrap100

algorithm. Then, we will discuss the proposed method as well as the methods and metrics101

used to test it. Finally, an empirical example is shown to demonstrate how our optimization102

approach improves the interpretation of the final partition of the network into distinct103

communities or factors using data from the Developmental Coordination Disorder104

Questionnaire (DCDQ: Schoemaker et al., 2006).105
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Estimating Factors in Network Psychometrics106

Network Model Estimation. To estimate the number and composition of factors107

in the network psychometrics literature, EGA is used. EGA uses two main network108

estimation methods: the graphical least absolute shrinkage and selection operator (glasso;109

Friedman, Hastie, & Tibshirani, 2008) and triangulated maximally filtered graph (TMFG;110

Massara, Di Matteo, & Aste, 2016).111

The glasso is a commonly used method for estimating networks that are known as112

Gaussian Graphical Models (GGM) (Lauritzen, 1996). The original input matrix and the113

edges of the network are made up of partial correlations between variables, in other words114

the correlation between variables after conditioning on all other variables in the network.115

The lasso operator shrinks coefficients to zero (to account for spurious relationships and116

control for overfitting to the data). This creates a sparse network that can be formed at117

different levels between a completely connected network to an entirely unconnected network.118

As each network in this range is estimated, the extended Bayesion information criterion119

(EBIC) (Chen & Chen, 2012) is computed. The network with the lowest EBIC is selected120

(Epskamp et al., 2018, 2018; Foygel & Drton, 2010). The EBIC has a hyperparameter that121

provides a penalization for more complicated models to help control for overfitting to the122

data (Epskamp & Fried, 2018). Typically, this hyperparameter (γ) is set to 0.5 (Foygel &123

Drton, 2010). Lower values of γ provide greater sensitivity but may reduce specificity124

(Williams, Rhemtulla, Wysocki, & Rast, 2019). As such, EGA starts off using γ = 0.5. If the125

network has disconnected nodes, EGA will continue to lower the value of γ until this is no126

longer the case.127

The TMFG algorithm is another commonly used method for network estimation that128

works by constraining the number of zero-order correlations included in the network to be129

3n− 6, where n is the number of variables (Christensen et al., 2019a; Golino, Shi, et al.,130
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2020; Massara et al., 2016). The algorithm begins by connecting together the four variables131

that have the highest correlation sum to all other variables. Iteratively, variables are added132

to this network based on the highest correlation sum of three variables with nodes already133

contained in the network.134

Walktrap Algorithm. After estimating a weighted network, the EGA technique135

uses the Walktrap algorithm to uncover the number and composition of latent factors,136

represented in networks as clusters of densely connected nodes (Golino, Shi, et al., 2020).137

The Walktrap algorithm (Pons & Latapy, 2006) transforms the original correlation matrix138

into a matrix containing transition probabilities called a transition matrix. Transition139

probabilities refer to the probability of transitioning between nodes based on edge strength.140

Edge strength is defined by the strength of the relationship between nodes, in this case the141

partial correlation between variables. This is done using a series random walks, typically of142

length 4, to estimate a distance measure for each pair of nodes. The algorithm then seeks to143

minimize the sum of squared distances between each node and all other nodes in its cluster144

using Ward’s hierarchical clustering method (Ward Jr, 1963).145

More formally, the Walktrap algorithm begins with a weighted, undirected original146

input matrix, A, where Aij is the strength between node i and node j. The algorithm147

reconstructs matrix A into a transition matrix, P, using a Markov chain random walk148

process defining the transition probability between node i and node j to be Pij = Aij

d(i) and149

doing so in length t to be P t
ij. Note that this probability will be influenced by the degree150

(number of connections) of node j such that there is a higher probability of transitioning to a151

node with a higher degree. P t
ij will also be higher when i and j are in the same community,152

however a high P t
ij does not necessarily mean that nodes i and j are in the same community.153

Using random walks, a distance d will be defined between nodes.154
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dij =
√√√√ n∑

k=1

(Pik − Pjk)2

NS(k) (1)

Where k refers to the cluster node i and j belong to. r should be smaller between node155

i and node j if they are in the same community and comparatively larger if they are not in156

the same community. This same logic can be applied to define the distance between node j157

and community C by158

P t
Cj = 1

|C|
∑
i∈C

P t
ij (2)

We can then define the distance between communities C1 and C2 to be159

rC1C2 =
√√√√ n∑

k=1

(P t
C1k − P t

C2k)2

d(k) (3)

The Walktrap algorithm uses an agglomerative clustering approach beginning by160

defining the most general case where each node is its own cluster. The distance, r, is161

computed between each of the nodes. The algorithm then begins to iteratively merge nodes162

with edges between them into larger clusters. Per methodology proposed by Pons and163

Latapy (2006), this merging is done in such a way to approximately minimize the variation164

in squared distances between each node and its community (σ).165

∆σ(C1, C2) = 1
n

(
∑
i∈C3

r2
iC3 −

∑
i∈C1

r2
iC1 −

∑
i∈C2

r2
iC2) (4)

Where C1 and C2 are clusters being merged to form a third cluster, C3. The resulting166

values will be stored in a dendrogram. From the probabilities given in P t
ij , the length t of the167

random walks should be optimized to gather sufficient information to accurately partition168
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the clusters.169

Optimizing the number of steps in the Walktrap algorithm170

As previously stated, the number of random walks (t) used in the Walktrap algorithm171

is generally set statically as an empirical compromise to computational efficiency, with t = 4172

or t = 5 being recommended as the most computationally efficient approach (Pons & Latapy,173

2006). In the network psychometrics literature, setting the number of steps as t = 4 has174

shown to be effective in recovering the number of simulated factors (Golino, Shi, et al., 2020)175

or communities of sparse count data (Gates et al., 2019). As Pons and Latapy (2006) states,176

t must be large enough to adequately capture the topography of the graph, but if t is too177

large, then the probability of transitioning from one node to another depends solely on the178

degree of the second node. For most applications in psychology in which the Walktrap179

algorithm is used to identify communities of densely connected nodes representing latent180

factors, as in the EGA approach, tuning the number of steps is highly desirable, since it can181

lead to improved factor estimation and can facilitate the interpretation of the factors due to182

a improved placement of variables per factor.183

To tune the Walktrap hyperparameter (i.e. number of steps), we propose an iterative184

algorithm. First, a network is estimated (e.g., using the glasso or the TMFG network185

methods). Then, the Walktrap algorithm is applied with the number of steps set as 3. The186

fit of the resulting partition of the multidimensional space (in this case the partition of the187

network into communities) to the data is then computed using the total entropy fit index188

(TEFI: Golino, Moulder, et al., 2020). The TEFI index has shown to present the highest189

accuracy in detecting the correct dimensionality solution (i.e. number of factors and correct190

placement of variables per factor) in a Monte-Carlo simulation study (Golino, Moulder, et191

al., 2020) where traditional fit indices used in factor analysis and structural equation192

modeling were also used. The TEFI index assesses the degree of uncertainty of the partition193
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of a multidimensional space into separate distinct categories (i.e., latent factors or clusters),194

where lower TEFI values indicate less uncertainty of the dimensionality solution. In other195

words, lower TEFI values indicates that a given dimensionality structure fits the data better196

than an alternative dimensionality solution with higher TEFI values, indicating that the197

former is more likely to represent the best organization of the variables than the latter. The198

TEFI index is calculated as follows:199

TEFI =
[∑NF

i=1 S(ρi)
NF

− S(ρ)
]

+
S(ρ)−

NF∑
i=1
S(ρi)

×√NF

 (5)

Where NF is the number of factors (or communities) estimated by the Walktrap200

algorithm, S(ρi) is the Von Neumann entropy for each individual factor and S(ρ) is the201

total entropy of the system of variables. Golino, Moulder, et al. (2020) showed that the Von202

Neumann entropy can be approximately estimated in a correlation matrix by scaling it so203

that the trace of the matrix equals one (i.e. taking a correlation matrix and dividing all204

entries by the number of columns of the matrix). After scaling the correlation matrix, an205

entropy-like metric can be obtained by the negative of the trace of the product of the density206

matrix by the log of elements of the density matrix (see: Golino, Moulder, et al., 2020).207

The TEFI index has two parts that can be separated as TEFI = [A] + [B] (Golino,208

Moulder, et al., 2020). Element [A] is similar to that of the total correlation of multiple209

variables (Watanabe, 1960), but instead of using the joint entropy for the partitions (factors210

or clusters), it uses the total entropy of the system (i.e. entropy calculated using all variables211

together). Additionally, the sum of the individual entropies (estimated per factor or cluster)212

is divided by the number of partitions (i.e. factors or clusters), yielding what Watanabe213

(2001) termed “K-function”. Element [B] reduces the influence of [A] by the number of214

factors used to describe a given data set. As Golino, Moulder, et al. (2020) note, while [A] is215

expected to decrease monotonically as the number of factors increases, [B] is expected to216
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increase as the number of factors increase. [B] represents the reduction in average entropy of217

a set of data conditional on a given factor or community structure. The square root of the218

number of factors was chosen in [B] in order to control the expected growth trajectory of [B]219

as the number of factors increases. Golino, Moulder, et al. (2020) argues that the expected220

decrease in total entropy going from 1 to 2 factors would be higher than the expected221

decrease in entropy going from 100 to 101 factors, and therefore the multiplication by the222

square root of the number of factors is used to model this behavior.223

Methods224

In order to better understand the impact of varying the number of steps taken by the225

random walks, t will be adjusted from 3 to 10 within multiple data structures and226

community structure accuracy will be compared. The next paragraphs will describe the data227

generation mechanism used (a two-step approach), the design of the Monte Carlo simulation228

implemented and how the results are analyzed.229

Data will be generated using a Monte Carlo simulation manipulating various data230

properties. First, a four factor structure and resulting correlation matrix will be estimated231

varying the sample size, continuous or categorical variables (4 categories), the number of232

variables per factor, whether or not the factors have the same number of variables within233

them, factor loadings, and the correlation between factors. When the number of variables234

within a community are unequal, two factors are reduced by one variable and two factors are235

increased by one variable (i.e., 8 variable factors have four factors containing 7, 7, 9, and 9236

variables). Relationships between the resulting variables will be estimated using either237

Pearson correlation, polychoric correlations (for categorical variables), or Louis-Guttman238

Image Structural Analysis (described below) and placed in a matrix.239
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Data Generation240

The data generation mechanism used in the current paper follows a two-step approach.241

The first step follows the common factor model used by Golino, Shi, et al. (2020), that works242

as follows. First, the reproduced population correlation matrix (with communalities in the243

diagonal) is computed:244

RR = ΛΦΛ′, (6)

where RR is the reproduced population correlation matrix, lambda (Λ) is a k× r factor245

loading matrix for k variables and r factors, and phi (Φ) is the structure matrix of the latent246

variables (i.e., a r × r matrix of correlations among factors). This procedure implies that the247

generated data does not contain correlated residuals (minor factors) at the population level.248

The population correlation matrix RP is then obtained by inserting unities in the249

diagonal of RR, thereby raising the matrix to full rank. Next, a Cholesky decomposition of250

RP is performed, such that:251

RP = U′U. (7)

If either RP is not semi-positive definite (i.e., at least one eigenvalue is ≤ 0) or an252

item’s communality is greater than 0.90, the Λ matrix is replaced and a new RP matrix is253

computed following the same procedure. Subsequently, the sample data matrix of continuous254

variables is computed as:255

X = ZU, (8)
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where Z is a matrix of random standard normal deviates with rows equal to the sample256

size and columns equal to the number of variables.257

Following Golino, Shi, et al. (2020) cross-loadings with magnitudes consistent to those258

commonly found in real data (Bollmann, Heene, Küchenhoff, & Bühner, 2015) are randomly259

drawn from a normal distribution (with mean zero and variance of .15) for all the items260

except for the first two in each factor, which were set as markers (i.e., all of their261

cross-loadings are fixed to zero). Of note, regarding the generation of the main loadings: The262

function generates the main loadings by drawing random values from a uniform distribution263

that has a range of ±.10 from the specified value (so if the main loadings are set at 0.70, the264

function generates loading values between 0.60 and 0.80). The generated data is then used to265

compute an empirical correlation matrix CX.266

After estimating the data following the procedure described above, a second step is267

implemented. As indicated by Figure 1, the resulting correlation matrix of the simulated268

data (from the factor model; X) is then be multiplied by a predetermined undirected and269

unweighted network structure N (with number and composition of communities equal to the270

number and composition of factors as simulated in the first step above) where the probability271

of nodes being linked within a community and between communities will be varied from low272

to high. The networks are simulated following the framework of Girvan and Newman (2002)273

for generating networks with specific (i.e., known) community structures. Multiplying CX by274

N generates a matrix of weights W with two important characteristics: the underlying275

factor structure is known (used to generate CX) and matches exactly the community276

structure of N. The final sample data matrix of continuous variables is computed following a277

multivariate normal distribution with mean zero and variance-covariace matrix W. The final278

sample data matrix contain continuous variables that can be discretized to generate279

polytomous data following the procedure described by Golino, Shi, et al. (2020).280

This second step is necessary to control an important characteristic of networks that is281
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Figure 1 . Network Data Generation

usually not controlled in the simulation studies employing the exploratory graph analysis282

technique (e.g., Golino, Shi, et al., 2020): the link probabilities. Using a two-step data283

generation approach is necessary to make the resulting data closer to real datasets.284

In sum, data was generated in two steps: first, data is generated using a factor model285

and the sample correlation matrix is obtained. In the second step a unweighted, undirected286

network is generated and both matrices are multiplied to add a structural bias to the sample287

correlation matrix obtained in the first step. This second portion can be thought of as adding288

in spurious relationships at both the intra- and inter-community levels. We simulated a289

network with a known number of communities (matching the data-generation mechanism of290

the factor model), but with different levels of probabilities within and between communities291

in terms of edges. Therefore, even if the true factor model has low interfactor correlations,292

the structural bias will forcibly add edges between communities, or if the true factor model293

has low factor loadings, the structural bias will forcibly add edges within communities. Due294
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to this methodology, we use the terms factor and community interchangeably.295

All R code used in the current project are available in the Open Science Framework, as296

well as the R Markdown manuscript integrating code and text for data analysis.297

Design298

To investigate the suitability of our algorithm to optimize the number of steps of the299

Walktrap procedure, a Monte Carlo simulation was implemented and nine between-subject300

data factors were systematically manipulated. Within the factor structure, the sample size301

(500 and 1000), the equivalence in the number of variables per factor (i.e., whether or not all302

factors have the same number of variables), number of variables per factor (4, 8), factor303

loadings (.40 and .70), factor correlations (.30, .50 and .70), and type of variable (continuous304

or polytomous with four response categories). Within the network structure, the probability305

of links between communities (p-Out: .50 and .90), probability of links within communities306

(p-In: .50, .75), and network method (glasso and TMFG) were manipulated. The307

relationship between simulated variables was estimated either using traditional correlation308

coefficients (Pearson for the continuous data condition and polychoric for the polytomous309

data) or using the scaled covariance (or correlation) of images from Guttman’s Image310

Structural Analysis (Guttman, 1953). In Guttman’s image structural analysis, the311

covariance matrix of the anti-images (Γ) for n variables is:312

Γ = S2 ×R−1 × S2

where S2 is the diagonal matrix with the anti-norms (S2 = Diag
(

∆(R)
∆(Rii)

)
, being ∆R the313

determinant of R and ∆(Rii) the cofactor of Rii), and R−1 is the inverse of the correlation314

matrix R. The covariance matrix of the images (G) is:315
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G = R + Γ− 2S2

Guttman (1953) proposed a theorem in which any correlation coefficient can be316

regarded as the difference between two covariances, one for the common parts between the317

variables (images) and another by the alien parts (anti-images). This theorem leads to an318

important paradox, that the alien parts (i.e., the covariance of the partial anti-images) are319

more important to the structural analysis of a correlation matrix than the common parts320

(i.e., the covariance of the partial images), because a correlation matrix can be computed321

using only the partial anti-norms and the covariance of the anti-images (i.e.,322

R = S2 × Γ−1 × S2), but cannot be computed using the covariance of the images.323

Commoness in image structural analysis comes from the use of a multiple-regression324

approach in which correlations can be explained by means of the multiple regression of each325

variable on the remaining n-1 variables. Guttman’s image structural analysis was linked to326

factor analysis in several classical works (Harman, 1976; Harris, 1962), and here the scaled327

covariance matrix of the images is also used, to be contrasted to the results obtained using328

traditional (Pearson or polychoric) correlation estimation techniques. The goal in using329

Guttman’s image structural analysis is to investigate its effect in the accuracy of the330

Walktrap algorithm used in the EGA framework.331

This design results in 1536 conditions to be compared. For each condition, 500332

datasets were simulated.333

Data Analysis334

Assessing Accuracy of Cluster Partitions. For each simulated dataset, TEFI335

values from t = 3 to t = 10 will be compared. The model with the lowest value of TEFI will336

be identified and the structure and accuracy of the partition will be compared to t = 4 as337
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seen in Figure 2.338

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15

V16V17

V18

V19 V20

V21

V22
V23

V24

1

2

3

4

4 Steps

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15

V16V17

V18

V19 V20

V21

V22
V23

V24

1

2

3

4

5 Steps (Optimal)

Figure 2 . Default vs. Optimal Estimated Structure

The accuracy of a partition is considered to be higher when nodes sharing high edge339

weights are assigned to the same cluster while nodes sharing comparatively lower edge340

weights are assigned to separate clusters. The current paper will employ multiple measures341

of fit to assess the accuracy of the Walktraph algorithm: Majority Placement (MP), the342

Hubert-Arabie Adjusted Rand Index (ARIHA), and Normalized Mutual Information (NMI).343

Additionally we use an overall measure of accuracy coded as 1 when the correct number of344

communities was discovered and 0 otherwise.345

Majority Placement. Majority placement (MP) is a classification rate assessing346

the portion of nodes correctly classified (Gates et al., 2016; Girvan & Newman, 2002) If a347

node is placed in a community with more than 50% (the majority) of all other nodes from its348

true community then it is defined as being in its true community (Fortunato, 2010). More349

formally,350
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MP =
N∑

i=1

τi

N
,


1 if node i is placed with ≥ 50% of nodes from its true community

0 otherwise
(9)

where for each node i, τi is 1 if the node is in a community with 50% or more of other351

nodes from its true community. Note that this metric becomes unreliable if there are fewer352

communities identified than in the true structure (e.g., if only one community is detected, all353

nodes are placed with ≥ 50% of the nodes from their true community).354

Hubert-Arabie Adjusted Rand Index. Given the potential biases of relying355

solely on MP, we are additionally employing the Hubert-Arabie Adjusted Rand Index (ARIHA;356

(Hubert & Arabie, 1985)). ARIHA provides complementary information to the MP however it357

has more rigid constraints on what constitutes correct placement (Gates et al., 2016;358

Steinley, 2004). There are penalizations for pairing nodes in the same community if they are359

not paired in the true structure, and vice versa. In this way, ARIHA penalizes the quality of360

fit for identifying fewer communities than exist in the true structure.361

ARIHA is formally defined as:362

ARIHA =

(
N
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
N
2

)
− [(a+ b)(a+ c) + (c+ d)(b+ d)]

(10)

where a represents the number of paired nodes, in the same community, both in the363

true and recovered cluster solution; b represents the number of nodes paired in the same364

community in the true structure that were not paired in the same community in the365

recovered structure; c represents the number of nodes not paired in the same community in366

the true structure that were paired in the same community in the covered structure; and367

finally, d represents the number of node pairs that are not in the same community in both368
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the true and recovered structure. ARIHA was implemented using the clues package in R369

(Chang et al., 2010).370

Normalized Mutual Information. Normalized mutual information (NMI)371

compares the true and recovered partitions by creating a confusion matrix where rows372

represent true communities and columns represent recovered communities (Danon,373

Diaz-Guilera, Duch, & Arenas, 2005). Nij is the node in true community i that also appears374

in the recovered community j. This matrix is then used to assess the similarity of partitions.375

Formally, NMI is defined as:376

I(A,B) =
−2∑cA

i=1
∑cB

j=1Nijlog( Nij

Ni.N.j
)∑cA

i=1Ni.log(Ni.

N
) +∑cB

j=1N.jlog(N.j

N
)

(11)

where Nij represents a matrix in which A represents a vector of true communities, B377

represents a vector of recovered communities, cA and cB denote the number of communities378

in either A or B, the sum of row i is denoted by Ni., and the sum of column j is denoted by379

N.j. NMI has a maximum of 1, the true and recovered communities are identical, and a380

minimum of 0, when no true communities are recovered.381

Results382

Comparing TEFI across all values of t, the lowest TEFI value within 49.7% of the383

simulated datasets were obtained by a value other than t = 4. Within all values of t other384

than 4, Figure 3 represents the proportion of datasets where each value of t provided the385

optimal fit (i.e., the lowest TEFI value).386

The question then becomes how does the optimal dimensionality structure (i.e., the387

structure with the lowest TEFI) compare to the default structure (i.e., the structure388

estimated with t = 4) when the optimal model is selected for a value of t other than 4. To389
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Figure 3 . Proportion of Optimal Steps Within t Other Than 4

investigate this, we evaluated the interaction between each data factor. A 10-way ANOVA390

across all data factors was conducted using change in overall accuracy, MP, ARIHA, and391

NMI. Change in a given metric was computed by the metric value at the optimal number of392

steps minus the metric value at t = 4 for those datasets where the default structure393

estimated was not the structure estimated using the optimized number of steps. We recorded394

the effect size of each main effect and interaction using partial eta squared (η2
p) following the395

guidelines of Cohen (2013) where values of 0.01 represent small effects, 0.06 medium effects,396

and 0.14 or more large effects.397

For each metric, a greater positive difference between the optimal structure and the398

default structure is preferred. For instance, if the optimal structure for a given dataset had a399

MP value of 0.5 and the default structure had a MP value of 0.1, then the difference in MP400

would be 0.5− 0.1 = 0.4, indicating a gain in majority placement when the number of steps401

is optimized using the TEFI index. However, if the optimal structure had a MP value of 0.4402

and the default structure had a MP value of 0.5, then the difference in MP would be403

0.4− 0.5 = −0.1, indicating that by optimizing the number of steps the resulting structure404

has a lower majority placement value.405
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There were several data structures that exhibited no main effect or interaction after406

evaluating η2
p. However, two such data conditions exhibited interesting results when visually407

inspecting change in accuracy metrics. 4 shows differences in the interaction between408

network estimation method and correlation type when split by variable type. When using409

Louis-Guttman Image Structural Analysis, we see slight improvement in accuracy for410

polytomous data regardless of network estimation method and improvement in MP when411

using glasso.412

Additionally, we found small differences (as seen in Figure 5), a result that’s in the413

opposite direction of what is obtained in the same conditions but for the traditional414

correlation techniques. For this data condition, we see improvements both in majority415

placement and accuracy.416
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Figure 4 . Interaction between Network Estimation and Correlation Type by Variable Type

Figure 6 shows the overall interaction of interfactor correlations, factor loadings, the417

probability of node connections within communities, and the probability of node connections418

between communities split by the number of variables per commmunity and the type of419

variable. In general, four variables per community do not see marked improvement in any420
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metric except for MP. Eight variables per community, however, is in general associated with421

greater improvement across each metric. This relationship is most notable and consistent422

within accuracy. When p-Out is lower, 0.5, number of variables per community is 8, as423

interfactor correlations increase so does the improvement in accuracy, regardless of factor424

loadings. However, when p-Out is higher, 0.9, the opposite is true. For 8 variables per425

community, as interfactor correlations increase, there is a decrease in the improvement of426

accuracy. In both scenarios the change in other metrics remain constant with the exception427

of MP. When p-Out = 0.90, there is a slight upward trend in the improvement of MP as428

interfactor correlations increase for both 4 and 8 variable per factor.429

The relationship between interfactor correlations, factor loadings, and p-In and p-Out430

remain constant regardless of variable type. Interestingly, the trend in accuracy improvement431

as interfactor correlations increase seen when split by variable type for p-Out = 0.50 is no432

longer notable when split by variable type. However, when p-Out = 0.90, the improvement433

in accuracy still decreases as interfactor correlation increases and the improvement in MP434
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still increases as interfactor correlation increases.435
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Since most, if not all, of psychological measurement relies on polytomous response436

variable, and the larger effects of tuning the number of steps used in the Walktrap algorithm437

were seen in polytomous data conditions with more variables per factor (i.e., 8), the438

remainder of results will be reported on these conditions only and one 8-way ANOVA was439

conducted for these data structures. Table 1 shows the effect sizes for each effect from this440

model.441

Figures 8, 9, and 10 show the 3 effects showing at least a small effect size (η2
p > 0.01).442

As seen in Figure 8, when p-In is greater (0.75), there is a slight improvement in each metric443

change compared to p-In at 0.50. Similarly, Figure 9 when p-Out is greater (0.90) and444

interfactor correlation is lower (0.30) there is greater improvement in accuracy and MP.445
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Figure 7 . Interaction between Factor Loadings (Loading), Factor Correlations (Factor Corr.),
p-In and p-Out by Variable Type

However, as interfactor correlation increases, this relationship is no longer consistent. Within446

p-Out at 0.50, as interfactor correlations increase there is an increase in the gain for accuracy447

but the other three metrics remain constant. Overall, the proposed method shows448

improvement in both accuracy and MP across levels of interfactor correlation, and presents449

the larger gains when there’s more structural bias (i.e., larger interfactor correlations and450

lower p-Out, and lower interfactor correlations and high p-Out).451

Finally, 10 is split by factor loadings where we see a similar relationship within p-Out452

at 0.90 where this is a more notable increase in accuracy and MP. When p-Out is lower (0.50)453

as factor loadings increase, there is a slight gain in each metric. Interestingly, across all three454

plots in Figures 8, 9, and 10 we see little to no improvement in NMI and ARIHHA and a455

majority of the improvement is notable in Accuracy and MP. Again, as happened with the456
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Table 1
Effect Size by Effect Tested for 8 Polytomous Variables per Factor

Accuracy ARIHA MP NMI
Network 0.000 0.001 0.011 0.006
CORF 0.001 0.014 0.015 0.029
P.OUT 0.000 0.041 0.064 0.100
CORF:P.OUT 0.017 0.002 0.001 0.005

p-Out link probability and interfactor correlation pairing, the larger the structural bias, the457

bigger the gain in accuracy and majority placement for the p-In and factor loadings pairing.458

Empirical Example459

To demonstrate the use of our approach to tune the number of steps used in the460

Walktrap algorithm used in exploratory graph analysis, we apply this method to the461

Developmental Coordination Disorder Questionnaire (DCDQ: Schoemaker et al., 2006). Data462

was provided to us through the Simons Foundation Powering Autism Research for Knowledge463

(SPARK) of the Simons Foundation Autism Research Initiative (SFARI), a large research464

initiative which has collected data from over 50,000 individuals with autism and their465

families (Feliciano et al., 2018). The DCDQ is a questionnaire given to parents of children466

(aged 5 to 15) to assess Developmental Coordination Disorder (DCD) commonly seen in467

individuals with autism spectrum disorders. DCD manifests as subtle motor skill impairment468

which affect things such as handwriting, clumsiness, energy levels, and athletic ability.469

A grid search was conducted across values of t using EGA. Relationships between470

variables were estimated using partial correlation and the network was estimated using471

glasso. Figure 11 shows the TEFI values across each level of t. When using the default472

t = 4, TEFI = −7.64. The lowest value of TEFI (-9.72) occurs when t = 9 These results473

indicate that t = 9 provides the optimal model for this dataset. Figure 12 shows the474

difference in estimated community structure across t = 4 and t = 9.475



OPTIMIZING COMMUNITY DETECTION 26

0.00

0.05

0.10

0.15

A
cc

ur
ac

y

A
R

IH
A

M
P

N
M

I

Metrics

V
al

ue

p−In

0.5

0.75

Figure 8 . p-In Effect for 8 Polytomous Variables per Factor

Factor 
C

orr.: 0.30
Factor 

C
orr.: 0.50

Factor 
C

orr.: 0.70
A

cc
ur

ac
y

A
R

IH
A

M
P

N
M

I

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

Metrics

V
al

ue

p−Out

0.5

0.9

Figure 9 . Interaction between p-Out and Factor Correlations (Factor Corr.) for 8 Polytomous
Variables per Factor



OPTIMIZING COMMUNITY DETECTION 27

Loading: 
0.40

Loading: 
0.70

A
cc

ur
ac

y

A
R

IH
A

M
P

N
M

I

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

Metrics

V
al

ue

p−Out

0.5

0.9

Figure 10 . Interaction between p-Out and Factor Loadings (Loading) for 8 Polytomous
Variables per Factor

Throw Ball

Catch BallHit Ball

Jump Obstacles
Runs fast/similar

Follows Planned Motor Activity
Writing/Drawing Fast

Prints Legibly

Proper Writing/Drawing Pressure

Cuts Out Shapes Easily

Likes Sports/Motor Skills
Learns New Motor Tasks

Quick/Competent Tidying Up

Bull in China Shop
Easily Fatigued

Energy

Fine Motor/Handwriting

Motor Skills

Sports

4 Steps

Throw Ball

Catch BallHit Ball

Jump Obstacles
Runs fast/similar

Follows Planned Motor Activity
Writing/Drawing Fast

Prints Legibly

Proper Writing/Drawing Pressure

Cuts Out Shapes Easily

Likes Sports/Motor Skills
Learns New Motor Tasks

Quick/Competent Tidying Up

Bull in China Shop
Easily Fatigued

Fine Motor Skills

Motor Control

Motor Skills

9 Steps

Figure 12 . DCDQ Graph Estimations



OPTIMIZING COMMUNITY DETECTION 28

−10

−8

−6

−4

4 6 8 10
Steps

T
E

F
I

Figure 11 . DCDQ TEFI Across Values of t

Table 2 shows the items of the DCDQ along with which scales they loaded onto from476

the original scale validation compared to the dimensions identified by EGA with an477

optimized t value. The TEFI value obtained by the optimal EGA model (-9.72) is lower478

than the TEFI value obtained by the original factor structure (-9.25). Both analyses479

revealed three very similar dimensions. However, the dimensionality uncovered by EGA480

using the proposed method moved items into slightly different positions within the481

community structure which in turn adjusts the interpretation of these communities.482
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Table 2
Comparing DCDQ Dimensionality Assessments

Item Original Factor Analysis: TEFI = -9.25 Optimal EGA: TEFI = -9.72

Throws ball in a controlled and accurate

fashion.

1. Control During Movement 1. Motor Skills

Catches a small ball from a distance. 1. Control During Movement 1. Motor Skills

Hits an approaching ball or birdie with a bat

or racquet accurately.

1. Control During Movement 1. Motor Skills

Jumps easily over obstacles found in garden or

play environment.

1. Control During Movement 1. Motor Skills

Runs as fast and in a similar way to other

children of the same gender and age.

1. Control During Movement 1. Motor Skills

Is interested in and likes participating in

sports or active games requiring good motor

skills.

3. General Coordination 1. Motor Skills

Learns new motor tasks easily and does not

require more practice or time than other

children to achieve the same level of skill.

3. General Coordination 1. Motor Skills
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Table 2
Comparing DCDQ Dimensionality Assessments (continued)

Item Original Factor Analysis: TEFI = -9.25 Optimal EGA: TEFI = -9.72

Cuts out pictures and shapes accurately and

easily.

2. Fine Motor/Handwriting 2. Fine Motor Skills

Printing, writing, or drawing is fast enough to

keep up with the rest of the children.

2. Fine Motor/Handwriting 2. Fine Motor Skills

Printing or writing of letters, numbers, and

words is legible, precise, or accurate.

2. Fine Motor/Handwriting 2. Fine Motor Skills

Uses appropriate effort or tension when

printing, writing, or drawing.

2. Fine Motor/Handwriting 2. Fine Motor Skills

Can follow their plan of motor activity and

organize their body to effectively complete the

task.

1. Control During Movement 3. Motor Control

Child is quick and competent in tidying up,

putting on shoes, dressing, etc.

3. General Coordination 3. Motor Control

Could be described as a ’bull in a china shop’

(appears clumsy, might break fragile things in

a small room)

3. General Coordination 3. Motor Control
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Table 2
Comparing DCDQ Dimensionality Assessments (continued)

Item Original Factor Analysis: TEFI = -9.25 Optimal EGA: TEFI = -9.72

Fatiues easily, appears to slouch and ’fall out’

of the chair if required to sit for long periods.

3. General Coordination 3. Motor Control
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All items related to fine motor skills and writing were identified in both analyses as a483

complete factor. Items related to sports and the enjoyment/proficiency of motor skills were484

assigned to the same community by EGA. In the original factor structure, whether or not485

the child enjoyed sports or enjoyed learning new motor skills did not load on to the same486

factor as items related to their abilities (e.g., throwing, catching, or hitting a ball). The item487

relating to whether or not the child is interested in participating in sports loaded onto a488

factor labeled “general coordination” with other items related to clumsiness, ability to clean489

up, and energy level. From a face valid standpoint, while these items are related generally to490

motor skills and coordination, it does not seem that they account for a similar type of491

variance in the overall construct. Rather the third community identified by EGA in this492

analysis appears to be more cohesive containing items related to ability to plan and493

accurately execute a task, ability to complete a task such as tidying up, and levels of494

clumsiness and fatigue.495

Discussion496

The Walktrap algorithm is a widely used community detection algorithm within497

network psychometrics particularly for estimating latent factors. However, the Walktrap498

algorithm contains a hyperparameter (t) the properties of which have not been fully499

researched. The present study tested a grid search approach for tuning t, identifying the500

optimal model with TEFI. Using synthetic data following data structures commonly found501

in psychological research, the benefits in model accuracy using this approach were502

investigated.503

Data was simulated by multiplying a matrix of variables following a common factor504

model by a unweighted, undirected network to add a structural bias to the sample505

correlation matrix. 500 datasets were simulated across 1536 varied data structures, similar to506

the wide variety of structures found in substantive psychometric research. EGA was507
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implemented varying the number of steps used by the Walktrap algorithm from 3 to 10. The508

optimal model with the lowest TEFI value was identified and compared to the model at509

t = 4. Using overall accuracy, MP, ARIHA, and NMI as measures of partition accuracy, an510

analysis was conducted to identify whether or not and which kind of data structures benefit511

from varying t.512

The results indicate that especially as sampling error is introduced into data, varying513

the number of steps within the Walktrap algorithm is beneficial. Importantly, it was514

demonstrated that the proposed method functioned similarly for both continuous and515

polytomous data. In line with previous dimensionality assessment research, the proposed516

method was particularly effective with a higher number of variables per factor (Garrido,517

Abad, & Ponsoda, 2011) as well as work in factor analysis positing that the increase in518

indicators also increases model error (MacCallum, Widaman, Preacher, & Hong, 2001).519

As a higher probability of spurious intercommunity connections is introduced, the520

proposed method showed improvement over the traditional method both in estimating the521

correct number of communities but also the probability that nodes will be placed with other522

nodes from their true community. Spurious intercommunity connections not only interact523

with interfactor correlations, but also factor loadings. As the probability of spurious524

intercommunity connections increases, the proposed method provides improved model525

estimation. These findings are also in line with prior research indicating that higher526

interfactor correlations and lower loadings present particular challenges in accurate527

dimensionality assessment (Garrido et al., 2011; Garrido, Abad, & Ponsoda, 2013; Lubbe,528

2019). Finally, when using Louis-Guttman Image Structural analysis as opposed to529

traditional correlations, there was a greater improvement in MP for polytomous data. The530

greatest metric improvement provided by the proposed method was seen in Accuracy and531

MP. These both relate directly to important aspects of how dimensionality assessment532

influences substantive research.533
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When substantive researchers validate a new measure, dimensionality assessment is534

often one of the first steps taken. As scales are broken down into further subscales, the facets535

of the larger latent structure being measured become clearer. In terms of structural validity,536

researchers and clinicians rely on the theory that scores and their variation directly relate to537

the structure of the scale and its subscales (Borsboom, Mellenbergh, & Van Heerden, 2004;538

Steger, 2006). As such, it is vital that any method applied to assess the relationship among539

items and the dimensionality of a scale is optimized to estimate the correct number of540

dimensions as well as place items together that assess the same dimension.541

Flores-Kanter, Garrido, Moretti, and Medrano (2021) provide a great example of this542

using the Positive and Negative Affective Scale (PANAS; Watson, Clark, & Tellegen, 1988)543

where they review the multitude of studies evaluating its structure and discuss the544

implication of inconsistent structures estimated using traditional factor analytic techniques.545

In its validation, the PANAS was first identified as a three factor model: Positive Affect,546

Afraid, and Upset. These two negative affect scales (Afraid and Upset) represent orthogonal547

structures that many studies lump together as unidimensional. Flores-Kanter et al. (2021)548

evaluate the PANAS with EGA to assess the dimensionality (and stability thereof) and549

reveal a structure almost identical to the original three factor model. Similarly, the empirical550

example outlined in the current paper demonstrates the differences in scale interpretation551

based on the estimated factor structure. For both scales, the application of advanced and552

optimized methodology provided a clearer and more interpretable structure than traditional553

methods.554

For the current study, it should be noted that in the data generation method, we555

introduced structural bias to better imitate empirical datasets. Therefore, error is introduced556

into model results not just from the model estimation process, but also from simulated557

sampling error. As a result, the magnitude of η2
p was impacted and no large effect sizes were558

found. Nonetheless, small and medium effect sizes revealed interesting relationships.559
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While the current paper reports rigorous testing of the proposed method in over 1500560

combinations of common data structures, there are still several conditions not manipulated.561

For example, the proposed method was only tested for a four factor structure and also did562

not investigate how the method performs in very large networks (e.g., over 100 nodes).563

Additionally, the data generation method did not incorporate population error as it is564

traditionally implemented in psychometric literatur (Montoya & Edwards, 2020).565

Future expansion on the current research should investigate the same application with566

different fit indices beyond TEFI (e.g., AIC and BIC). While the current method has been567

shown to work well in cross-sectional factor designs, additional research should be conducted568

expanding into dynamical systems. Finally, particularly within polytomous data, additional569

work should be conducted investigating how this method functions when variables are570

skewed.571

Conclusion572

Proper latent trait modeling is the crux of almost every portion of psychological573

research. Many theories and statistical methods have been developed to assess the574

dimensionality of latent variables, each with its own strengths and weaknesses. EGA has575

been shown to perform well (and above and beyond similar methods) across data structures576

commonly found in psychological research. We aim to improve EGA even further by577

introducing a new technique when using the Walktrap algorithm for community detection.578

Instead of following standard guidelines statically setting t, a grid search can be conducted579

to optimize select the optimal value of t. In order to select the optimal value of t, we580

recommend using TEFI due to its advantages in detecting the correct dimensionality581

solution.582

The proposed method was tested across a variety of data structures commonly found583
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in psychological research (e.g., highly correlated factors with spurious connections collected584

with polytomous response data). It was found to provide improvement above and beyond585

traditional methodology for the Walktrap algorithm in identifying the dimensionality and586

specific item-community organization. Additionally, the method was applied to a substantive587

dataset and shown to provide a clearer and more cohesive structure than both the original588

factor structure and the dimensionality structure identified by the traditional Walktrap589

application.590



OPTIMIZING COMMUNITY DETECTION 37

References591

Bollmann, S., Heene, M., Küchenhoff, H., & Bühner, M. (2015). What can the real world do592

for simulation studies? A comparison of exploratory methods. LMU. Retrieved from593

Department%20of%20Statistics,%20University%20of%20Munich:%20https:594

//epub.ub.uni-muenchen.de/24518/595

Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16 (1), 5–13.596

Borsboom, D., Mellenbergh, G. J., & Van Heerden, J. (2004). The concept of validity.597

Psychological Review, 111 (4), 1061.598

Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., . . .599

Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into600

clinical longitudinal data. PloS One, 8 (4), e60188.601

Chang, F., Qiu, W., Zamar, R. H., Lazarus, R., Wang, X., & others. (2010). Clues: An r602

package for nonparametric clustering based on local shrinking. Journal of Statistical603

Software, 33 (4), 1–16.604

Chen, J., & Chen, Z. (2012). Extended bic for small-n-large-p sparse glm. Statistica Sinica,605

555–574.606

Christensen, A. P., Cotter, K. N., & Silvia, P. J. (2019a). Reopening openness to experience:607

A network analysis of four openness to experience inventories. Journal of Personality608

Assessment, 101 (6), 574–588.609

Christensen, A. P., Garrido, L. E., & Golino, H. (2021). Comparing community detection610

algorithms in psychological data: A monte carlo simulation. PsyArXiv.611

https://doi.org/10.31234/osf.io/hz89e612

Department%20of%20Statistics,%20University%20of%20Munich:%20https://epub.ub.uni-muenchen.de/24518/
Department%20of%20Statistics,%20University%20of%20Munich:%20https://epub.ub.uni-muenchen.de/24518/
Department%20of%20Statistics,%20University%20of%20Munich:%20https://epub.ub.uni-muenchen.de/24518/
https://doi.org/10.31234/osf.io/hz89e


OPTIMIZING COMMUNITY DETECTION 38

Christensen, A. P., Golino, H., & Silvia, P. J. (2019b). A psychometric network perspective613

on the measurement and assessment of personality traits. Preprint.614

Christensen, A. P., Gross, G. M., Golino, H. F., Silvia, P. J., & Kwapil, T. R. (2019c).615

Exploratory graph analysis of the multidimensional schizotypy scale. Schizophrenia616

Research, 206, 43–51.617

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press.618

Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2019).619

Stability and variability of personality networks. A tutorial on recent developments in620

network psychometrics. Personality and Individual Differences, 136, 68–78.621

Danon, L., Diaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community622

structure identification. Journal of Statistical Mechanics: Theory and Experiment,623

2005 (09), P09008.624

Dijkstra, J. K., Cillessen, A. H., & Borch, C. (2013). Popularity and adolescent friendship625

networks: Selection and influence dynamics. Developmental Psychology, 49 (7), 1242.626

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and627

their accuracy: A tutorial paper. Behavior Research Methods, 50 (1), 195–212.628

Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks.629

Psychological Methods, 23 (4), 617.630

Feliciano, P., Daniels, A. M., Snyder, L. G., Beaumont, A., Camba, A., Esler, A., . . . others.631

(2018). SPARK: A us cohort of 50,000 families to accelerate autism research. Neuron,632

97 (3), 488–493.633

Flores-Kanter, P. E., Garrido, L. E., Moretti, L. S., & Medrano, L. A. (2021). A modern634

network approach to revisiting the positive and negative affective schedule (panas)635



OPTIMIZING COMMUNITY DETECTION 39

construct validity.636

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486 (3-5), 75–174.637

Foygel, R., & Drton, M. (2010). Extended bayesian information criteria for gaussian638

graphical models. arXiv Preprint arXiv:1011.6640.639

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with640

the graphical lasso. Biostatistics, 9 (3), 432–441.641

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011). Performance of velicer’s minimum642

average partial factor retention method with categorical variables. Educational and643

Psychological Measurement, 71 (3), 551–570.644

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new look at horn’s parallel analysis645

with ordinal variables. Psychological Methods, 18 (4), 454.646

Gates, K. M., Fisher, Z. F., Arizmendi, C., Henry, T. R., Duffy, K. A., & Mucha, P. J.647

(2019). Assessing the robustness of cluster solutions obtained from sparse count648

matrices. Psychological Methods.649

Gates, K. M., Henry, T., Steinley, D., & Fair, D. A. (2016). A monte carlo evaluation of650

weighted community detection algorithms. Frontiers in Neuroinformatics, 10, 45.651

Gates, K. M., & Molenaar, P. C. (2012). Group search algorithm recovers effective652

connectivity maps for individuals in homogeneous and heterogeneous samples.653

NeuroImage, 63 (1), 310–319.654

Girvan, M., & Newman, M. E. (2002). Community structure in social and biological655

networks. Proceedings of the National Academy of Sciences, 99 (12), 7821–7826.656

Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for657



OPTIMIZING COMMUNITY DETECTION 40

estimating the number of dimensions in psychological research. PloS One, 12 (6).658

Golino, H., Moulder, R., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., . . . Boker,659

S. M. (2020). Entropy fit indices: New fit measures for assessing the structure and660

dimensionality of multiple latent variables. Multivariate Behavioral Research, 1–29.661

Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., . . .662

Martinez-Molina, A. (2020). Investigating the performance of exploratory graph663

analysis and traditional techniques to identify the number of latent factors: A664

simulation and tutorial. Psychological Methods.665

Guttman, L. (1953). Image theory for the structure of quantitative variates. Psychometrika,666

18 (4), 277–296.667

Harman, H. H. (1976). Modern factor analysis. University of Chicago press.668

Harris, C. W. (1962). Some rao-guttman relationships. Psychometrika, 27 (3), 247–263.669

Hoffman, M., Steinley, D., Gates, K. M., Prinstein, M. J., & Brusco, M. J. (2018). Detecting670

clusters/communities in social networks. Multivariate Behavioral Research, 53 (1),671

57–73.672

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2 (1),673

193–218.674

Lauritzen, S. L. (1996). Graphical models (Vol. 17). Clarendon Press.675

Lubbe, D. (2019). Parallel analysis with categorical variables: Impact of category probability676

proportions on dimensionality assessment accuracy. Psychological Methods, 24 (3),677

339.678

MacCallum, R. C., Widaman, K. F., Preacher, K. J., & Hong, S. (2001). Sample size in679



OPTIMIZING COMMUNITY DETECTION 41

factor analysis: The role of model error. Multivariate Behavioral Research, 36 (4),680

611–637.681

Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., Bork, R. van, Waldorp, L., . . . Maris,682

G. (2018). An introduction to network psychometrics: Relating ising network models683

to item response theory models. Multivariate Behavioral Research, 53 (1), 15–35.684

Massara, G. P., Di Matteo, T., & Aste, T. (2016). Network filtering for big data:685

Triangulated maximally filtered graph. Journal of Complex Networks, 5 (2), 161–178.686

McNally, R. J. (2016). Can network analysis transform psychopathology? Behaviour687

Research and Therapy, 86, 95–104.688

Montoya, A. K., & Edwards, M. C. (2020). The poor fit of model fit for selecting number of689

factors in exploratory factor analysis for scale evaluation. Educational and690

Psychological Measurement, 0013164420942899.691

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of692

the National Academy of Sciences, 103 (23), 8577–8582.693

Orman, G. K., & Labatut, V. (2009). A comparison of community detection algorithms on694

artificial networks. In International conference on discovery science (pp. 242–256).695

Springer.696

Pons, P., & Latapy, M. (2006). Computing communities in large networks using random697

walks. J. Graph Algorithms Appl., 10 (2), 191–218.698

Schoemaker, M. M., Flapper, B., Verheij, N. P., Wilson, B. N., Reinders-Messelink, H. A., &699

Kloet, A. de. (2006). Evaluation of the developmental coordination disorder700

questionnaire as a screening instrument. Developmental Medicine and Child701

Neurology, 48 (8), 668–673.702



OPTIMIZING COMMUNITY DETECTION 42

Steger, M. F. (2006). An illustration of issues in factor extraction and identification of703

dimensionality in psychological assessment data. Journal of Personality Assessment,704

86 (3), 263–272.705

Steinley, D. (2004). Properties of the hubert-arable adjusted rand index. Psychological706

Methods, 9 (3), 386.707

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of708

the American Statistical Association, 58 (301), 236–244.709

Watanabe, H. (2001). Clustering as average entropy minimization and its application to710

structure analysis of complex systems. In "2001 ieee international conference on711

systems, man and cybernetics": "E-systems and e-man for cybernetics in cyberspace"712

(Vol. 4, pp. 2408–2414). https://doi.org/10.1109/ICSMC.2001.972918713

Watanabe, S. (1960). Information theoretical analysis of multivariate correlation. IBM714

Journal of Research and Development, 4 (1), 66–82.715

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief716

measures of positive and negative affect: The panas scales. Journal of Personality717

and Social Psychology, 54 (6), 1063.718

Williams, D. R., Rhemtulla, M., Wysocki, A. C., & Rast, P. (2019). On nonregularized719

estimation of psychological networks. Multivariate Behavioral Research, 54 (5),720

719–750.721

Yang, Z., Algesheimer, R., & Tessone, C. J. (2016). A comparative analysis of community722

detection algorithms on artificial networks. Scientific Reports, 6, 30750.723

https://doi.org/10.1109/ICSMC.2001.972918

	Introduction
	Estimating Factors in Network Psychometrics
	Network Model Estimation
	Walktrap Algorithm

	Optimizing the number of steps in the Walktrap algorithm

	Methods
	Data Generation
	Design
	Data Analysis
	Assessing Accuracy of Cluster Partitions
	Majority Placement
	Hubert-Arabie Adjusted Rand Index
	Normalized Mutual Information


	Results
	Empirical Example
	Discussion
	Conclusion
	References

