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Abstract

Establishing measurement invariance (MI) is vital to ensure applicability and comparability

across groups (or time points) in psychological measurement. If MI is violated, differences

between groups could be due to measurement rather than true differences between groups.

Factor analytic methods are commonly used to test MI; however, many existing methods

have reduced power to detect MI due to model misspecification (e.g., noninvariant referent

indicators, reliance on data-driven methods). Literature reviews on MI studies have reported

inaccurate or inadequately described models with modeling errors primarily predicted by

software choice. Another reduction in power may be due to goodness of fit measures when

group sample sizes vary. Network psychometrics methods to test MI are limited and

primarily focus on partial correlation differences. In the present research, we propose a novel

network psychometrics method to test MI within the Exploratory Graph Analysis framework.

This method leverages so-called network loadings by calculating their differences between

groups and uses permutation testing to stasitically compare these differences to the

permutated null distribution. A simulation study was conducted using data structures

common in psychological research (factor models) that included unequal group sample sizes.

The proposed network psychometrics method demonstrated comparable ability to factor

analytic methods in detecting MI, with some improvement in certain conditions such as

lower noninvariance effect sizes in smaller or unequal sample sizes.
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Metric Invariance in Exploratory Graph Analysis via Permutation Testing

Introduction

Measurement invariance assesses the equivalence of a measure across groups at a

single time point (cross-sectional) or across time (longitudinal). Equivalent measurement

indicates that a measure has the same meaning in each group and is therefore measuring the

same construct in the same way across groups. Demonstrating measurement invariance is

vital for the application of any psychological measurement. Tests for measurement invariance

usually occur prior to administration across qualitatively distinct groups or time points to

ensure reliable and valid measurement (Vandenberg & Lance, 2000). Measurement between

groups where measurement invariance does not hold cannot be credibly interpreted across

cultures, languages, sociodemographic categories, or administration modes (Borsboom, 2006).

When measurement invariance is violated, overall score differences between groups may be

the result of the measure itself rather than true differences between groups (F. F. Chen,

2007).

Traditionally, measurement invariance is tested using latent variable methods such as

Item Response Theory (IRT) or factor analysis (FA) (Stark et al., 2006). In applied

psychological research, FA is more common (Putnick & Bornstein, 2016) and therefore serves

as the conceptual framework for the paper. Within FA, four consecutive tests are used to

establish measurement invariance: configural invariance (equivalence of factor structure),

metric invariance (equivalence of factor loadings), scalar invariance (equivalence of item

intercepts), and strict invariance (equivalence of item residuals) (Widaman & Reise, 1997).

Full measurement invariance is only achieved when a measure is determined to be invariant

on all of these tests.

The present research investigated a novel network psychometrics method to test

metric invariance within the the Exploratory Graph Analysis framework (H. F. Golino &

Epskamp, 2017). Before introducing this method, a brief overview of FA measurement
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invariance and some issues associated them (focusing on metric invariance) is provided.

After, Exploratory Graph Analysis and the proposed method are introduced and formulated,

respectively. Finally, a simulation study that compares the proposed method against

traditional FA measurement is conducted.

Measurement Invariance in Traditional Psychometrics

Factorial Invariance

In the FA framework, measurement invariance is conducted by comparing a

constrained model to a less constrained model from a weaker level of invariance (e.g.,

comparing the more constrained factor loading equivalence model to the less constrained

factor structure equivalence model). The constrained model is formed by setting relevant

parameters across groups (e.g., loadings) to be equal and comparing model fit to the

unconstrained model (i.e., the same parameters are freely estimated). A model comparison is

conducted and change in model fit statistics (e.g., ∆CFI, ∆χ2) is used to determine

invariance. If the constrained model fits about as well as the less constrained model (e.g.,

∆CFI ≤ 0.02), then invariance at that level is considered to be established. This process is

staged starting from the least constrained model (i.e., configural invariance) to the most

constrained model (strict invariance). Each level is only tested if the previous level

demonstrates invariance.

Configural invariance (equivalence of factor structure) is established by assessing the

fit of a Multi-Group Confirmatory Factor Analysis model on all groups. The common factor

model is defined as,

Xjk = τjk +
r∑

m=1
λjmkWm + Uj, (1)

where Xjk is the jth random variable in the kth population. This value is defined by a linear

function where τjk is the latent intercept for the jth variable in the kth population, λjmk is
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the factor pattern parameters for the jth variable corresponding to the r common factors

(m = 1, . . . , r) in the kth population, Wm are the common factor scores for the r factors, and

Uj is the unique factor score for the jth measured variable. When W′ = (W1,W2, . . . ,Wr)

and U′ = (U1, U2, . . . , Up) (where p is the number of measured variables) it is assumed that

Ek(U) = 0 and uncorrelated with W.

From (1), the unconditional mean (µXk
) and covariance structure (ΣXk

) for the

measured variables X can be expressed as,

Ek(X) = µXk
= τ k + Λkκk

and

Covk(X) = ΣXk
= ΛkΦΛ′

k + θk,

where Xk represents the measured variables, Λk represents the factor loading matrix, κ

represents the common factor scores for r common factors, Φk = Covk(W), and

θk = Covk(U) for the kth population. Following Millsap (2011), configural invariance can

then be defined as,

µXk
= τ k + Λkcκk (2)

and

ΣXk
= ΛkcΦkΛ′

kc + Θk, (3)

for groups k = 1, . . . , K where Λkc denotes that the pattern matrices have the same

structure with configural invariance.
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The pattern matrices imply that each population has the same number of factors with

the same distribution of variables. If this model fits satisfactorily on all groups, then the

organization of items into these constructs is appropriate for all groups (Putnick & Bornstein,

2016). In other words, configural invariance establishes that the pattern of zero and nonzero

loadings (fixed and free loadings) exists in all groups (Widaman & Reise, 1997). This pattern

only demonstrates that similar, but not equivalent, latent factors exist in all groups. To

perform comparisons across groups, model parameters must also be established as invariant.

Metric invariance implies, for groups k = 1, . . . , K,

µXk
= τ k + Λκk (4)

and

ΣXk
= ΛkΦkΛ′

k + Θk, (5)

which implies loadings are equivalent across groups. This model is compared against the

configural model, and if demonstrated to have similar fit, then each item contributes to their

respective latent factors (and the overall latent construct) similarly across all groups

(Putnick & Bornstein, 2016). If metric invariance is not established (the model fits

significantly worse), then there can be no comparison of factor variances and covariances

(and subsequently scaled correlations) across groups (Widaman & Reise, 1997). Without the

foundation of metric invariance, further testing for scalar and strict invariance should not be

conducted. Testing for partial invariance of loadings, however, is often appropriate.

Partial Invariance

Partial invariance was introduced because of the difficulties establishing full

measurement invariance in practice (Byrne et al., 1989). Partial invariance is when only a

portion of the parameter set demonstrates noninvariance. For metric invariance, the goal was
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to determine how many noninvariant item loadings existed per latent factor. Opinions vary

concerning what type of partial invariance is acceptable (e.g., partial scalar invariance could

still impact the mean of the latent factor), as well as what extent of partial invariance is

permissible (i.e., the proportion of noninvariant items) (Putnick & Bornstein, 2016).

Nonetheless, testing for partial invariance is useful to identify specific item parameters that

are noninvariant. In the case of metric invariance, individual invariance constraints can be

selectively introduced to Λ and tested.

Arguably, identifying partial invariance provides more useful information than an

omnibus test. Testing for partial invariance provides the same level of information as an

omnibus test (whether noninvariance is present) but also where, if any, noninvariance exists.

Partial invariance testing could also identify noninvariance not identified by an omnibus test.

This difference is a well documented with omnibus tests (Raykov et al., 2013), and the

potential effect of misidentifying items as invariant is quite concerning. Prior research has

indicated that conducting individual local tests can lead to a more accurate evaluation of

noninvariance (Jung & Yoon, 2016; Raykov et al., 2020; Stark et al., 2006). Therefore,

examining local tests rather than relying on overall global testing provides more detailed

information and lowers the risk of Type II errors. In some cases, failing to identify a truly

noninvariant item (Type II error) could have worse consequences for measurement than

incorrectly classifying a truly invariant item (Type I error).

Problems With Traditional Testing

Some partial invariance tests use a referent indicator or an item whose relevant

parameter (e.g., loading) is set to be equal across groups in the unconstrained model.

Employing referent indicators assumes that the chosen indicator is itself invariant (often

without testing for whether it is invariant). This strategy relies heavily on proper

implementation by the researcher, leading to potential problems if carried out without care.

Therefore, we focus on three partial invariance methods that do not require a referent
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indicator: factor-ratio test (Rensvold & Cheung, 1998), a data-driven method that applies

modification indices in a sequential manner proposed by Yoon and Millsap (2007), and a

method proposed by Raykov et al. (2013) using a multiple testing procedure.

The factor-ratio test assesses partial invariance by comparing a fully unconstrained

model to versions of a constrained model. Multiple constrained models are defined using all

possible combinations of referent variables and choosing one of the remaining variables to

test for invariance. A simulation study conducted by French and Finch (2008) found that

this method works well to control false positive rates across data conditions and can

successfully identify invariant items even when noninvariant items are present in the same

factor. Since this method investigates all possible combinations of referent indicators, it is

computationally expensive as the number of variables increases.

Yoon and Millsap (2007) proposed a data-driven method to sequentially evaluate

modification indices. A modification index is the change in model fit (based on a likelihood

ratio test) after a particular parameter constraint was freed. For two groups within a fully

constrained metric model, the factor variance of only one group is fixed to one. The factor

variance of the other group is estimated freely. Then, for both groups, all factor loadings are

constrained to be equal. Based on fit indices, if this model fits as well as the configural

model, then full invariance is established. If not, then each individual constrained parameter

is freed and the change in χ2 from a likelihood ratio test is estimated. This process is

repeated until adequate model fit is established. Their simulation study found that this

method controls false positives very well but primarily in “ideal” data conditions (large

sample sizes, greater difference in loadings, low cross loadings). One limitation of this

approach is that model misspecifications can lead an artificial inflation of Type I errors (Kim

& Yoon, 2011; Whittaker, 2012), especially as model modifications are made throughout the

testing process (Yoon & Millsap, 2007).

The third method uses the Benjamini-Hochberg procedure (BH-procedure; Benjamini
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& Hochberg, 1995), a multiple comparison method that controls the Type I error, to

compare two models using χ2 testing (Raykov et al., 2013). One model (the baseline model)

is a fully constrained model. In the other model, a parameter (e.g., loading) is freed for one

item across groups. The two models are compared and this process is repeated for each item.

At each level of invariance testing, the number of tests conducted is equal to the number of

variables. Zhang and Yang (2022) found that this method maintains high rates of power to

detect noninvariance across varying data conditions (sample size, degree of noninvariance,

proportion of noninvariance, and location of noninvariance). Although this method does

circumvent the choice of referent indicator, using a fully constrained baseline model (i.e.,

including any model with constrained noninvariant items) could negatively impact accuracy

(Benjamini & Hochberg, 1995). Given the computationally intensive nature of the

factor-ratio test and model (mis)specification issues with the data-driven approach proposed

by Yoon and Millsap (2007), we chose to focus on Raykov et al.’s (Raykov et al., 2013)

method in this paper.

Network Psychometrics

The primary goal of the current work is to provide a network psychometrics method

to test for metric invariance. Network psychometric methods have become a popular

alternative to latent variable modeling. A network psychometric model represents a measure

(e.g., self-report inventory) as a network where nodes (circles) represent variables (e.g., items)

and edges (lines) represent the associations between them. There are many existing methods

to compare psychometric network models across groups such as using a grouping variable as

a moderator (Haslbeck & Bork, 2022), comparing the total sum of connections in the

networks (Network Comparison Test) (Van Borkulo et al., 2022), recursive partitioning of

covariance structures (Jones et al., 2020), Fused Graphical Lasso (Danaher et al., 2014), and

a Bayesian method (Williams et al., 2020). Although these methods are robust and widely

applicable, they compare individual edges or the entire network rather than sub-structures



MEASUREMENT INVARIANCE IN EXPLORATORY GRAPH ANALYSIS 10

that may exist within them (e.g., dimensions). The Exploratory Graph Analysis framework

was introduced as a way to investigate dimensions in psychometric networks.

Exploratory Graph Analysis (EGA)

Exploratory Graph Analysis (EGA) first estimates a network and then applies a

community detection algorithm to identify communities or dimensions in the network (H.

Golino et al., 2020; H. F. Golino & Epskamp, 2017). A common approach to estimate a

network in psychology is to apply the graphical least absolute shrinkage and selection

operator (glasso) (Friedman et al., 2008). The glasso estimates a Gaussian Graphical Model

(Lauritzen, 1996) where edges represent the partial correlations between two variables

conditioned on all other variables. The glasso is an extension of the least absolute shrinkage

and selection operator (Tibshirani, 1996) regularization approach to the covariance matrix.

Through regularization, partial correlations in the network shrink toward zero with some

becoming zero. In the glasso algorithm, there is a parameter called lambda that determines

the strength of the shrinkage (i.e., tendency for partial correlations to shrink to zero). In the

network psychometrics literature, the extended Bayesian information criterion (EBIC) (J.

Chen & Chen, 2008) is used to select the lambda parameter based on model fit to the data

(Epskamp & Fried, 2018).

After the network is estimated, a community detection algorithm is be applied.

Community detection algorithms identify communities or sets of nodes that tend to be more

densely connected to one another than the rest of the nodes in the network. In their seminal

paper, H. F. Golino and Epskamp (2017) demonstrated that communities in psychometric

networks are statistically consistent with latent factors when data are generated from a

factor model. The Walktrap algorithm (Pons & Latapy, 2006) is a commonly applied

community detection algorithm in the network psychometrics literature (Christensen et al.,

2023). The Walktrap algorithm applies a random walk process over the nodes and edges of

the network, using the edge weights (i.e., partial correlations) to inform that probability of
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“walking” from one node to another. Ward’s hierarchical clustering algorithm (Ward, 1963) is

applied the transition matrix and modularity, or the extent the network is partitioned into

communities where nodes are more strongly connected to nodes in their community than

other nodes (Newman, 2006), is used to select the community partition (i.e., which nodes

belong to which communities). Figure 1 depicts the end result of the EGA process on the

bfi or 25-item Big Five Inventory dataset in the {psych} package (version 2.3.6) (Revelle,

2017) in R (version 4.1.0) (R Core Team, 2022).

Figure 1
EGA network plot of the bfi dataset in the {psych} package. Circles represent items in the
BFI dataset and their colors correspond to their community. Lines represent edges with green
indicating a positive partial correlation and red indicating a negative partial correlation. Line
thickness corresponds to the magnitude of the partial correlation between two items.

Beyond community detection, there are other measures to quantify the structure of

networks. The majority of the network psychometric literature has focused on the local
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structure of networks using centrality measures. Centrality measures quantify the relative

position of a node in a network. To date, node strength or the (absolute) sum of a node’s

connections has been the most common measure applied (Bringmann et al., 2019). Recent

work by Hallquist et al. (2021) showed that node strength is comprised of both dominant

and cross loadings (from a FA perspective). They argue that unless dimensional structure is

accounted for the metrics used to quantify networks, such as node strength, will be biased

due to latent confounding. This finding prompted Christensen and Golino (2021b) to

investigate whether splitting a node strength based on the communities identified by EGA

could resolve the latent confounding issue. Through a series of simulations, they showed that

this issue can be mitigated using this strategy. They coined the standardized version of this

measure network loadings because they were statistically consistent with the factor loadings

generated from the simulated data. These network loadings open the door for more

traditional psychometric applications in network psychometrics including measurement

invariance.

Measurement Invariance using Network Psychometrics

In this section, a method to test configural invariance is established and a novel

method to test metric invariance is proposed. These methods do not extend to scalar and

strict invariance because no latent variables are estimated in the network models and

therefore there are no item means or residuals to compare. The goal of these methods is to

establish configural and metric invariance in network psychometrics that are statistically

consistent with traditional psychometric approaches.

Configural Invariance in the EGA Framework

Before introducing the proposed method to test metric invariance, a method to test

configural invariance must be established. Configural invariance in the EGA framework

exists when the same nodes have been identified in the same communities for all groups.

This configuration can be tested in a cursory way by estimating EGA separately for each
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group and comparing their structures. Even if the initial structure as defined by EGA

indicates configural invariance, further testing should be conducted to minimize any effects

found by random sampling variability. In other words, additional testing should be

conducted to test whether items are consistently organized into the same communities and

whether the number of communities and their structure fluctuates.

A recent approach called Bootstrap EGA (Christensen & Golino, 2021a) produces a

sampling distribution of EGA results that can then used to evaluate the stability of the

identified structure. Bootstrap EGA uses structural consistency to assess the stability of

dimensions and items. Structural consistency refers to the proportion of bootstraps in which

the same structure as the initial EGA was recovered. If the groups are pooled together into

one sample, higher structural consistency indicates it is more likely for this structure to be

representative of the population structure for all groups. Lower structural consistency, or if it

is found that the structure varies along with the sample size or the specific samples drawn,

indicates that configural noninvariance may be present. Structural consistency can then be

further broken down to assess the stability of dimensions (number of dimensions identified)

and the stability of items (proportion of bootstraps in which an item was assigned to the

same dimension). Items showing a stability of < 0.70 are considered to be less stable

(Christensen & Golino, 2021a), indicating that these items may not be reproducing in the

same community for all groups.

To test for configural invariance in the EGA framework, we recommend a

straightforward approach by conducting bootstrap EGA on the entire sample. If the goal is

to achieve invariance, then items with < 0.70 stability can be removed. Next, without these

items, the structures identified by EGA across groups can be evaluated. This process should

be repeated until a consistent common structure can be identified across all groups within a

sample. It should be noted that this approach allows for no amount of partial configural

invariance to be present in order to test for metric invariance.
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Metric Invariance in the EGA Framework

Once configural invariance is established, then metric invariance can be tested. The

proposed method tests the equivalence of network loadings across groups via permutation

testing. Permutation testing has many advantages over traditional hypothesis testing

approaches. Permutation tests make considerably fewer assumptions about the population

distribution than traditional hypothesis testing procedures (Chihara & Hesterberg, 2022).

The concept of permutation testing can be applied to any test statistic, providing flexibility

to easily adapt the model to any hypothesis or statistic (Chihara & Hesterberg, 2022;

Ludbrook & Dudley, 1998). First, we define network loadings, then we discuss the

permutation procedure.

Network loadings are mathematically defined as follows. Let Ψ represent a symmetric

network p× p made up of edge weights (e.g., partial correlations) where p is the number of

variables. Node strength is then defined as,

Si =
n∑

j=1
|ψij|,

where |ψij| is the absolute weight between node i and j. Then Si is the sum of the absolute

weights between node i and all other n nodes—that is, the strength of node i. Node strength

can then be split between the communities identified by EGA,

ℓic =
C∑

j∈c

|ψij|,

where ℓic is the sum of the edge weights in community c that are connected to node i (i.e.,

node i’s loading for community c), and C is the number of communities. This measure can

be standardized using,
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ℵic = ℓic√∑
ℓc

,

where
√∑

ℓc is equal to the square root of the sum of all the weights for the nodes in

community c.

Standardized loadings, ℵ, are absolute weights with the signs being added after the

loadings are computed. Unlike factor analysis, the number and content of communities is

extracted from the network’s structure before computing network loadings. Due to sparsity

induced by network estimation methods, it is possible for a node to have a network loading

of zero because it has no connections to one or more other communities.

To test the equivalence of network loadings across groups, we propose applying a

permutation test. We start with two groups and then discuss how it can be extended to

more than two groups. The original n× p data, D (where n is sample size and p is number

of variables), is split by grouping variable G into two groups, G1 and G2, to form two new

datasets, D1 and D2. EGA is performed separately using D1 and D2. In order for further

testing to occur, the community structure as identified by EGA must be identical for both

D1 and D2 (i.e., configural invariance). With identical community structures, the

corresponding p× C network loading matrices ℵ1 and ℵ2 are computed where C is the

number of communities. The difference between the two matrices is then computed by,

T = ℵ2 − ℵ2,

to form an p×C matrix T which contains test statistics for each item. Only the elements of

T that correspond to each variable’s assigned community are retained and the rest of the

values are set to zero (in factor analytic terms, the dominant loadings are retained and

cross-loadings are set to zero).

To form a null distribution for each test statistic to be compared to, grouping variable
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G is randomly reordered and becomes GR. Then the original data D is split by GR to form

two new datasets, DR1 and DR2, thereby removing any relationship between item responses

and group membership. This procedure is done repeatedly an i number of times creating i

new datasets DR1i and DR2i. EGA is performed on each permuted dataset DR1i and DR2i.

Then, network loadings are computed and the difference between the network loadings for

each item is taken using,

ti = ℵR1i − ℵR2i.

These differences are put in ascending order, t(1) ≤ · · · ≤ t(i), forming a null

distribution representing the difference in network loadings if there was no relationship

between group assignment and network loading. The final step is to compare each test

statistic to their respective null distributions at α = .05. p-values for item invariance are

calculated as,

g =


1 if ti ≥ T

0 otherwise,

l =


1 if ti ≤ T

0 otherwise,

G = (∑N
i=1 gi) + 1
(N + 1) ,

L = (∑N
i=1 li) + 1

(N + 1) ,
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p =


2G if G ≤ L

2L otherwise.

If any p-value is determined to be ≤ 0.05, it can be asserted that metric invariance

was violated, although if not all p-values are ≤ 0.05, then partial metric invariance has been

found. As previously mentioned, there is no agreement in the literature, to our knowledge, as

to what constitutes an acceptable level of partial invariance.

Conveniently, this approach is easily extended to three or more groups without

sacrificing computational efficiency. Similar to logic used when conducting multiple

comparisons after an omnibus test (Maxwell et al., 2018), it stands to reason that if

noninvariance were to be found using this method, then it would be found between the

groups with the largest difference in loadings. Therefore, for each variable we need only

identify the groups with the minimum and maximum network loadings. If these two groups

are significantly different from one another, then invariance cannot be supported. In this

way, this method runs the same number of tests regardless of how many groups are being

assessed. If noninvariance is found for an item, should the researcher wish, follow up tests

can continue to be conducted to identify which groups specifically are different from one

another. For each variable, the minimum loading would be compared to the second highest

loading. If noninvariance is again found, the minimum loading would be then compared to

the third highest loading, so on and so forth, until no significant differences are found.

Simulation Study

The following section outlines the methods used for each portion of the simulation

study. We compare the proposed method against the FA model with Raykov et al.’s (Raykov

et al., 2013) method. After introducing the FA approach, we discuss the multiple comparison

procedure (aforementioned BH-procedure) and how it is applied in the current study. The

data generation methodology, data conditions tested, and metrics used to assess model
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accuracy are then outlined in detail. For purposes of comparison, we focus on continuous

data. Although factor and network models can generalize to ordinal variables using

polychoric correlations, our intent was to evaluate the proposed method under ideal

conditions before submitting it to more extensive conditions.

Factor Analytic Testing Approach

To test metric and partial metric invariance using FA models, we estimated two

models: a configural (unconstrained model, see (2) and (3)) and a model with loadings

constrained to be equal across k populations (constrained metric model, see (4) and (5)). In

order to directly compare the FA approach to the method proposed for EGA, we tested for

partial metric invariance. Testing for partial metric invariance was conducted using three

methods: Free, Fixed, or Wald. The Free method follows the method proposed by Raykov et

al. (2013). Using the {semTools} package (version 0.5.6) (Jorgensen et al., 2022) in R, the

Fixed and Wald methods are run simultaneously with Free. Because this procedure is

commonly used in practice, we evaluated the results of all three methods.

In all methods, an original model was chosen to be either the constrained or

unconstrained model. Then, loadings were iteratively either fixed or freed to create a new

model which was then compared to the original model. Using these methods circumvented a

common problem in many approaches to invariance testing: we did not exclude any variables

by fixing the loading of one variable per factor to 1. In this way, we could make direct

comparisons across the EGA and FA approaches. Since we are only interested in whether an

item was identified as noninvariant, we do not report fit statistics (e.g., CFI) from these

models. Instead, we summarize the effectiveness of each methods ability to classify items

correctly as invariant or noninvariant.

The Free method uses the constrained model as the original model. Iteratively, each

variable j is freed in the matrix Λ to create J models. Each model is then compared to the

original model using a likelihood ratio test and an assessment of CFI for a total of J tests.
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The Fixed method uses the unconstrained model as the original model. Iteratively, each

variable j is constrained to be equal across populations k to create J models. Each model is

then compared to the original model using a likelihood ratio test and an assessment of CFI

for a total of J tests. The Wald method is similar to Free. It uses the constrained model as

the original model, but rather than iteratively freeing each jth variable and conducting

likelihood ratio tests it uses a multivariate Wald test. In each method, multiple hypotheses

are being tested. It should be noted that these methods do not adjust for Type I error.

Therefore, a multiple comparison test could be applied.

Multiple Comparison Problem

Within both frameworks, multiple hypotheses are tested which can artificially inflate

the Type I error and require a multiple comparison procedure (MCP) to be applied (Raykov

et al., 2013; Steinberg, 2001). To select which MCP to apply, we first need to define which

type of error we are most interested in controlling. A Type I error in this context is to

identify a truly invariant item as noninvariant; a Type II error is to identify a truly

noninvariant item as invariant. The practical risk of classifying a truly invariant item as

noninvariant is relatively low because it could still leave a set of adequate and applicable

invariant items. In contrast, falsely classifying a truly noninvariant item as invariant could

have serious consequences for measurement. Therefore, a conservative approach would favor

greater accuracy the identification of noninvariant over invariant items. Based on this

premise, greater emphasis was placed on correctly identifying noninvariant items and

controlling the Type II error.

Most MCPs focus on controlling the Family Wise Error Rate (FWER) or the

probability of making a Type I error at all, which is important to control if there could be

serious implications to falsely rejecting a null hypothesis. In the instance of partial

invariance, however, the opposite is true. The adverse impact of falsely identifying an item

as noninvariant is greater than falsely identifying an item as invariant, particularly if the



MEASUREMENT INVARIANCE IN EXPLORATORY GRAPH ANALYSIS 20

construct will be used to compare across groups (Shi et al., 2019). In this vein, we propose

the investigation of False Discovery Rate (FDR). FDR represents the expected number of

falsely rejected null hypotheses if any null hypotheses are rejected. Formally FDR, ϕ, is

defined as,

ϕ =


E(V |R), if R > 0

0, otherwise,

where V is the number of falsely rejected null hypotheses, and R is the total number of

rejected null hypotheses out of the set of all hypotheses tested. The BH-procedure, which

was designed to control the FDR, maintains a FWER at α = .05 as well as demonstrates

marked improvements in power above and beyond traditional MCP methods (e.g., Tukey,

Bonferroni, Scheffe). Raykov et al. (2013) first proposed the use of the BH-procedure

because it allows for a more accurate depiction of which parameters are truly noninvariant

when noninvariance is found rather than focusing on lowering the risk of mistakenly

identifying noninvariant parameters at all.

Data Generation

Data were generated from a factor model following Golino and colleagues’ (2020)

approach. First, a population correlation matrix for each group, RRG
, with communalities

on the diagonal is defined as,

RRG
= ΛGΦΛ′

G,

where RRG
is the reproduced population correlation matrix for each group G, ΛG is a p× r

factor loading matrix for p variables and r factors for each group G, and Φ is the structure

matrix of the latent variables (i.e., a r × r matrix of correlations among factors). This

structure means the population does not contain any correlated residuals and thereby no
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minor factors.

Then, by inserting unities on the diagonal of RRG
it becomes a full rank matrix and

is now population correlation matrix RPG
. Each group in G is assigned a RPG

matrix. A

Cholesky decomposition is performed on the population correlation matrix for each RPG
to

obtain new random values that maintain the original correlations, resulting in ΥG where,

RPG = Υ′
GΥG.

If any RPG
is not semi-positive definite or an item’s communality is greater than 0.90, then a

new RPG
matrix is constructed. From this matrix, the sample data matrix (continuous

variables) can be computed as

XG = ZGΥG,

where ZG is an n× p matrix where each value is a random draw from a standard normal

distribution and all variables are uncorrelated. The result is a dataset of continuous variables

for each group.

Design

The overall design of the simulation study closely followed Kim and Yoon (2011) with

a few modifications. A two factor model was simulated with each factor containing six

variables similar to Kim and Yoon (2011) and Yoon and Millsap (2007). Typically, simulation

studies investigating invariance methods use unidimensional models; however, we decided to

simulate two factors. This design allowed us to manipulate interfactor correlation and

investigate any impact on the power of the proposed method. Only one variable in one factor

was simulated to have different loadings across group. Because our main goal was to assess

each method’s ability to identify noninvariant items correctly, having only one noninvariant
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item allowed an “all-or-nothing” hit rate. Further, comparisons between methods to detect

invariant items within factors, both with and without noninvariant items, could be made.

For simplicity, only two groups were simulated but we note that each method’s

expansion into testing three or more groups is tractable. Factor loadings were set to be the

same across factors: Factor 1 = (0.80, 0.70, 0.60); Factor 2 = (0.80, 0.70, 0.60). Keeping

large, static factor loadings allowed us to make sure configural invariance was not negatively

impacted, particularly for data conditions with a large difference in loadings and/or a large

interfactor correlation. Similar to H. F. Golino and Epskamp (2017), the correlation between

factors was set to be small (0.30), moderate (0.50), or large (0.70).

The loading of Variable 5 in Factor 1 (0.70) was decreased in G1 by either 0.20 (small

difference) or 0.40 (large difference) as was done in Kim and Yoon (2011). Because we used

static factor loadings, the magnitude of loading differences have the same interpretation

across data conditions (Yoon & Millsap, 2007). Per group, there was either the same sample

size per group (500 or 1000 in both G1 and G2) or disparate sample sizes per group (500 in

G1 and 1000 in G2). These sample sizes allowed us to compare the proposed method’s ability

to detect noninvariant items in conditions that traditional methods typically struggle (i.e.,

small or disparate samples). In total, there were 18 separate conditions. For each condition,

500 datasets were simulated.

Measurement invariance was tested on each simulated dataset using EGA in the

{EGAnet} package (version 1.1.1) (H. Golino & Christensen, 2022), FA in the {lavaan}

package (version 0.6.15) (Rosseel, 2012), and {semTools} for FA measurement invariance.

All analyses were conducted in R and full code can be found at

https://osf.io/2ewyn/?view_only=7147ed15f51c45cda17628e666a91bf2.

Data Analysis

Confusion matrix metrics were used to assess the accuracy of each model’s

noninvariance detection. Because loadings were only changed for one variable (Variable 5 in

https://osf.io/2ewyn/?view_only=7147ed15f51c45cda17628e666a91bf2
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Factor 1) and all other variables had equivalent loadings in the population, noninvariance

should only be detected for Variable 5. Therefore, there is only one possible true positive

(TP) (or false negative; FN ) based on whether the model (in)correctly identifies

noninvariance in Variable 5. True negatives (TN ) occur when all other variables are

identified as invariant; false positives (FP) occur when all other variables are identified as

noninvariant.

Four separate metrics assessing the proportions of TP, TN, FP, and FN are employed

to emphasize different aspects of model accuracy: Hit Rate, Specificity, Sensitivity, and F1.

The {caret} package (version 6.0.94) (Kuhn, 2022) in R was used to calculate Specificity,

Sensitivity, and F1. All metrics were calculated separately using both MCP corrected and

uncorrected p-values.

Hit Rate provides a straight forward, overall assessment of method accuracy for

correctly identifying invariance or non-invariance. If a variable was correctly identified as a

TP or TN, then it was assigned a 1 for Hit Rate; otherwise, it was assigned a 0. Hit Rate

equals the mean number of correct identifications for each variable and condition. Specificity

( T N
T N+F P

) represents the proportion of correctly identified invariant items for each method.

Sensitivity ( T P
T P +F N

) represents the mean of correctly identifying the noninvariant item for

each method (i.e., Variable 5). F1 is calculated using Sensitivity and Precision. Precision

assesses the proportion of TP’s out of all rejected null hypotheses ( T P
T P +F P

) or accuracy of

identifying the truly noninvariant item at the cost of overidentifying other items as

noninvariant. F1 is the harmonic mean of these two metrics: 2(P recision×Sensitivity)
(P recision+Sensitivity) . The F1

metric is penalized when Precision and Sensitivity are unequal. For example, if

Precision = .50 and Sensitivity = .50, then F1 = .50. If they both increased to 0.80, then

F1 would increase to 0.80 as well. If, however, only one metric increased to 0.80, then F1

would be 0.62.

To summarize, Hit Rate provides a metric for accuracy that can assessed for each
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variable across conditions; Sensitivity and F1 assess the ability of each method to accurately

identify noninvariant items; Specificity assesses the ability of each method to accurately

identify invariant items. For all metrics, values range from 0 to 1 with values going to 1

indicating better performance. Although high Specificity and Sensitivity are desirable,

Sensitivity should be given greater weight in our study. Sensitivity represents the hit rate of

detecting the noninvariant variable: it must be either a TP or FP and therefore Sensitivity

boils down to the average accuracy for identifying the noninvariant variable in each condition.

Specificity represents the extent to which all invariant variables are correctly identified as

invariant. In most applied cases, there is a preference to avoid the conclusion that a measure

is invariant when it is not; therefore, Sensitivity is the key metric in our simulation study.

Results

Effect of MCP on p-Values

Configural invariance was recovered in 99.73% of the simulated datasets using EGA

and 100% using FA. To provide a direct, full comparison, the iterations that did not reach

configural invariance for EGA were removed. Within method, we assessed accuracy in terms

of metric invariance. Figures 2 and 3 show the mean and 95% confidence interval for the

p-values (both MCP corrected and uncorrected) of each variable split by method, sample

size, correlation between factors, and loading difference. A dashed line intercepts the y-axis

at .05 representing the α level.

Across methods, MCP corrected and uncorrected p-values were lowest in Variable 5,

regardless of condition. This result demonstrates that the manipulation was effective.

Looking at Figure 2 in the Free column, the 6 variables in Factor 1 had lower p-values than

the 6 variables in Factor 2. This pattern was not present for the other methods. Comparing

Figure 3 (MCP corrected p-values) to Figure 2 (uncorrected p-values), we see that the

average p-value is higher for MCP corrected p-values than uncorrected, regardless of whether

an item is invariant. Looking at the MCP corrected p-values (Figure 3), all 3 FA methods
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have a higher average p-value for Variable 5 when the difference in loading for Variable 5 is

set to 0.20 and sample size is either 500 or disparate. Under these same conditions, this same

trend in EGA is only noticeable when the correlation between factors increases to 0.70. In

other words, having a lower effect size with a smaller or disparate sample size affects the

uncorrected p-value for all 3 FA methods more so than EGA except when there is a higher

correlation between factors.

Figure 2
Mean uncorrected p-value for each item split by method and condition.
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Figure 3
Mean MCP corrected p-value for each item split by method and condition.

Hit Rate

Figure 4 shows the average Hit Rate for both the MCP corrected and uncorrected

p-values across items for each method by condition. In almost all cases, the MCP corrected

p-values produce a higher mean Hit Rate than uncorrected p-values. When the difference in

loadings is 0.40, EGA, Fixed, and Wald all have almost perfect Hit Rate across all variables.

In this condition, the same trend arises for Free as in Figures 2 and 3: mean Hit Rate is

lower in general for items in Factor 1 (Variables 1-6); however, its level of mean Hit Rate for

Factor 2 (Variables 7-12), is more similar to that of the other three methods. In other words,

having a higher effect size for EGA, Fixed, and Wald produces a higher Hit Rate, but for the

Free method, in the factor where noninvariance is present, having a higher effect size does

not improve the Hit Rate. For the Free method, all items in Factor 1 (where noninvariance is

present) have a lower Hit Rate when compared to items in Factor 2 (where no noninvariance

is present).
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When the difference in loading is set to 0.20 for Variable 5, all four methods had

lower mean Hit Rate when the p-value is MCP corrected as compared to the uncorrected

p-value. This trend is most notable for Fixed, Free, and Wald when sample size is smaller or

disparate, but does not appear when sample size is 1000. EGA only shows this trend when

sample size is smaller and gradually becomes more different as the correlation between

factors increases from 0.30 to 0.70. The magnitude of this effect is the same for Fixed, Free,

and Wald regardless of the correlation between factors. This indicates that EGA’s ability to

correctly identify noninvariant variables is not as heavily influenced by data structures as

Fixed, Free, and Wald. The Free method is better able to accurately identify invariant

variables when noninvariant items are not present in the same factor.

Figure 4
Mean Hit Rate across all items split by MCP corrected and uncorrected p-values, method, and
condition.

Overall Metrics

Table 1 shows the overall metrics across the methods for both the MCP corrected and

uncorrected p-values. When a correction was applied, an interesting pattern appears. Both

F1 and Specificity increase for all four methods, but Sensitivity decreases.
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Using uncorrected p-values, Sensitivity is nearly 1 for all four methods, EGA being

the highest at 0.99 and Fixed the lowest at 0.96. Once the BH-procedure was applied,

Sensitivity decreased for all four methods, most dramatically for Fixed and Wald, falling

below 0.90. Conversely, Sensitivity increased slightly by applying the BH-procedure while F1

values were dramatically increased by applying the BH-procedure going up, on average, by

0.14. When using MCP corrected p-values, EGA has the highest values for F1 (0.91) and is

tied for the highest Specificity with Fixed and Wald at 0.99. Free has the lowest values (using

the MCP corrected p-values) of all of four methods for both F1 (0.83) and Sensitivity (0.97).

Table 1
Overall Metrics by Method

Sensitivity F1 Specificity
Type Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected
EGA 0.99 0.93 0.76 0.91 0.94 0.99
Fixed 0.96 0.88 0.76 0.88 0.95 0.99
Free 0.98 0.93 0.65 0.83 0.90 0.97
Wald 0.97 0.89 0.77 0.89 0.95 0.99

Sensitivity

Figure 5 shows the Sensitivity values split by MCP corrected and uncorrected

p-values by method and data structure. When the difference in loadings is 0.40, all methods

in all conditions have perfect Sensitivity regardless of whether or not the p-value was MCP

corrected. When the difference in loadings is 0.20, uncorrected p-values lead to a higher level

of Sensitivity. In this condition, almost perfect Sensitivity was achieved using MCP corrected

p-values when sample size was 1000 for all methods. When the difference in loadings is set to

0.20, MCP corrected p-values were used, and sample size was smaller or disparate, EGA and

Free performed better than Fixed and Wald. EGA, however, was more heavily influenced by

the increase in correlation between factors; when the correlation between factors reached

0.70, EGA’s performance fell below Free’s to the same level as Fixed and Wald. Though
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when the correlation between factors was 0.30 or 0.50, EGA outperformed Free. To sum up,

a larger effect size always produced a perfect Sensitivity regardless of data condition or

method. When the effect size is lower, using uncorrected p-values improves Sensitivity.

Figure 5
Sensitivity split by MCP corrected and uncorrected p-values, method, and condition.

F1

Figure 6 shows the F1 values for MCP corrected and uncorrected p-values by method

and data structure. In all conditions and across all four methods, MCP corrected p-values

produce higher F1 values than uncorrected p-values. When the difference between loadings

is set to 0.40, EGA, Fixed, and Wald have similar (and nearly perfect) F1 values. Free,

however, has lower F1 values in this condition than the other three methods, particularly

when the sample size is increased to 1000. When the difference between loadings is set to

0.20 and F1 is calculated using the MCP corrected p-values, a similar pattern arises that was

seen in Sensitivity. EGA outperforms the other three methods when sample size is smaller or

disparate. EGA, however, was more heavily influenced by the increase in correlation between

factors; when the correlation between factors reached 0.70, EGA’s performance fell below
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Free’s to the same level as Fixed and Wald. When the correlation between factors was 0.30

or 0.50, EGA outperformed Free. Overall, EGA, Free, and Wald perform similarly in their

F1 values and MCP corrected p-values produced higher F1 values than uncorrected.

Figure 6
F1 split by MCP corrected and uncorrected p-values, method, and condition.

Specificity

Figure 7 shows the Specificity values for MCP corrected and uncorrected p-values by

method and data structure. Across all these conditions, Specificity calculated using MCP

corrected p-values is higher than uncorrected p-values. All methods have consistently high

and comparable levels of Specificity, except for the same trend that has been appearing for

Free. When the difference in loadings increases from 0.20 to 0.40, the Specificity for the Free

method decreases. Altogether, this indicates that each method is able to comparably recover

TN ’s or invariant items (except for the Free method in one condition).
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Figure 7
Specificity split by MCP corrected and uncorrected p-values, method, and condition.

Empirical Example: Testing Metric Invariance in the BAPQ

To demonstrate a substantive application of the proposed approach, a large dataset of

the Broad Autism Phenotype Questionnaire (BAPQ; Hurley et al., 2007) was used. Data

were provided by the Simons Foundation Powering Autism Research for Knowledge

(SPARK) of the Simons Foundation Autism Research Initiative (SFARI), a large research

initiative which has collected data from over 50,000 individuals with autism and their

families (Feliciano et al., 2018). The BAPQ is a 36-item questionnaire designed to assess

autism-related traits in adults. Participants are asked to rate the how often a statement

applies to them on a 6-point Likert scale ranging from (1) Very Rarely to (6) Very Often.

Items were intended to relate to one of three domains: aloofness, rigid personality, or

pragmatic language.

Notably, our simulation evaluated continuous data whereas most applied cases in

psychology, including this example, use ordinal data (usually 2, 5, or 7 categories). Similarly,

the glasso network estimation method is suited for continuous multivariate normal data.
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Consistent with much of the (network) psychometrics literature, polychoric correlations were

used, which assumes a bivariate normal distribution underlies the association between two

variables. Some researchers have argued in favor of Spearman’s correlations (Isvoranu &

Epskamp, 2021); however, our goal for the applied example is to be consistent with the

applied psychometrics literature, which uses polychoric correlations for ordinal variables in

both factor and network analysis.

This questionnaire was given to the parents (mother and father) of an autistic child

to assess the parent’s phenotypic level of autistic traits. We begin assessing measurement

invariance between mothers and fathers by establishing configural invariance. To do so, we

apply EGA separately to the data on mothers and the data on fathers and compare their

community structures. First, we load the {EGAnet} package and then we load the BAPQ

dataset into the Global Environment as an objected called bapq.all.

# Load {EGAnet} package

library(EGAnet)

# Load data

load("bapq.all.RData")

# Column names in the `bapq.all` data frame

colnames(bapq.all)

[1] "individual" "measure" "calculation_method"

[4] "q01" "q02" "q03"

[7] "q04" "q05" "q06"

[10] "q07" "q08" "q09"

[13] "q10" "q11" "q12"

[16] "q13" "q14" "q15"
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[19] "q16" "q17" "q18"

[22] "q19" "q20" "q21"

[25] "q22" "q23" "q24"

[28] "q25" "q26" "q27"

[31] "q28" "q29" "q30"

[34] "q31" "q32" "q33"

[37] "q34" "q35" "q36"

[40] "status" "Parent"

Next, we will run the EGA() function just for the mothers. To do this, we will need to

specify four arguments in the EGA() function: data, model, algorithm, and plot.EGA.

Since we are only interested in the mothers for this graph, we will subset the dataset to only

include those rows which have the parent listed as mother. The data argument takes only

those variables which we wanted included in the graph. Therefore, we select only columns 4

through 39 from the dataset as these are the items from the BAPQ. Next, we will set the

model to "glasso", algorithm to "walktrap", and plot.EGA to FALSE so that we can create

a plot with a customized title.

# Run EGA on each group and compare their structure

# EGA Mother

ega.mother <- EGA(

data = bapq.all[bapq.all$Parent == "Mother", 4:39],

model = "glasso", algorithm = "walktrap", plot.EGA = FALSE

)

# Plot EGA

plot(ega.mother, title = "Mother")
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Figure 8
EGA of BAPQ data for mothers only.

This process can be repeated for fathers:

# Run EGA on each group and compare their structure

# EGA Father

ega.father <- EGA(

data = bapq.all[bapq.all$Parent == "Father", 4:39],

model = "glasso", algorithm = "walktrap", plot.EGA = FALSE

)

# Plot EGA

plot(ega.father, title = "Father")
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Figure 9
EGA of BAPQ data for fathers only.

Visually we can see that the two graphs contain nonequivalent community structures.

In order to reach configural invariance, we assess the stability of the items on the full sample.

Investigating item stability allows us to see which items are consistently organized into the

same communities. We look at the stability of the items in the entire sample because

instability at this level could be due to items being partitioned into different communities

when split into subsamples. First, bootEGA() is run to iteratively resample and estimate

EGA. We only need to set two arguments: data and iter. The data argument takes the full

sample so we do not need to subset the rows. Similarly to the EGA() function it can only

take those columns we wish to include in the graph so we only select columns 4 through 39.

Then, dimensionStability() is used to compute the stability of the items. This function

only needs to be given the bootEGA object to run.
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# Bootstrap EGA

set.seed(1) # for reproducibility

boot.bapq <- bootEGA(data = bapq.all[,4:39], iter = 500,

uni.method = "LE", algorithm = "walktrap")

# Dimension Stability

bapq.stability <- dimensionStability(boot.bapq)

Figure 10
BAPQ item stability for all items using the full sample.
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Looking at Figure 10, there are four items with an item stability less than 0.70. Let’s

see what happens to the configural invariance if we remove them. To remove them, we will

create an object called remove which contains all the names of the items with a stability of

less than 0.70. Then, we will create a dataset called bapq.stable which does not contain

those four variables. After, we will rerun bootEGA() and dimensionStability() on the

new dataset.

# Creating a vector containing the names of unstable items

remove <-

bapq.stability$item.stability$item.stability$empirical.dimensions < 0.70

# Print variable names

names(remove[which(remove==TRUE)])

[1] "q12" "q23" "q25" "q28"

# Creating a new data frame containing only stable items

bapq.stable <- bapq.all[,4:39][,names(remove[which(remove==FALSE)])]

bapq.stable <- cbind(bapq.all[,c(1:3)],bapq.stable,bapq.all[,c(40,41)])

# Column names of the bapq.stable dataframe

colnames(bapq.stable)

[1] "individual" "measure" "calculation_method"

[4] "q01" "q02" "q03"

[7] "q04" "q05" "q06"

[10] "q07" "q08" "q09"

[13] "q10" "q11" "q13"

[16] "q14" "q15" "q16"
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[19] "q17" "q18" "q19"

[22] "q20" "q21" "q22"

[25] "q24" "q26" "q27"

[28] "q29" "q30" "q31"

[31] "q32" "q33" "q34"

[34] "q35" "q36" "status"

[37] "Parent"

# bootEGA

set.seed(1)

boot.bapq2 <- bootEGA(bapq.stable[,4:35], iter = 500)

# dimensionStability

bapq.stability2 <- dimensionStability(boot.bapq2)
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Figure 11
BAPQ item stability without unstable items using the full sample.

Now, we have a highly stable three community structure. We can now rerun EGA on

each group individually and check to see if this holds within the samples. We will rerun the

EGA() function on the bapq.stable dataset in the same way as above separately for

mothers and fathers.

# Run EGA on each group and compare their structure

# EGA Mother

ega.mother2 <- EGA(
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bapq.stable[bapq.all$Parent == "Mother", 4:35],

model = "glasso", algorithm = "walktrap", plot.ega = FALSE

)

plot(ega.mother2, title = "Mother")

Figure 12
EGA of BAPQ data for mothers only without unstable items.

# Run EGA on each group and compare their structure

# EGA Father

ega.father2 <- EGA(

bapq.stable[bapq.all$Parent == "Father", 4:35],

model = "glasso", algorithm = "walktrap", plot.ega = FALSE

)
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plot(ega.father2, title = "Father")

Figure 13
EGA of BAPQ data for fathers only without unstable items.

Visually, we can see that now each graph contains three communities, all of which

appear to have the same items in them. We can confirm that by comparing the wc object

within each saved EGA analysis. The wc object produced by EGA() is a vector of the item to

community assignments in the network.

ega.mother2$wc

q01 q02 q03 q04 q05 q06 q07 q08 q09 q10 q11 q13 q14 q15 q16 q17 q18 q19 q20 q21

3 1 2 1 3 2 1 2 3 1 1 2 1 2 3 1 3 2 1 1

q22 q24 q26 q27 q29 q30 q31 q32 q33 q34 q35 q36

2 2 2 3 1 2 3 1 2 1 2 3
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We can compute the normalized mutual information between the wc objects with a

value of 1 meaning identical:

igraph::compare(ega.mother2$wc, ega.father2$wc, method = "nmi")

[1] 1

Since all wc are the same, then we can say we have established configural invariance.

We can now test for metric invariance. This can be done using the invariance() function

from the {EGAnet} package and then investigate which items are significant (noninvariant).

We will investigate both uncorrected and MCP corrected p-values. To obtain MCP corrected

p-values, we can use the p.adjust() function to apply the BH-procedure.

met.invariance <- invariance(data = bapq.stable[,4:35],

groups = bapq.stable$Parent, gamma = 0)

plot(met.invariance)

# Metric Invariance

set.seed(1)

results <- invariance(bapq.stable[,4:35],bapq.stable$Parent)

# Applying BH-procedure

adjusted.p <- p.adjust(

results$results$p, method = "BH",

n = length(results$results$p)

)

# Uncorrected p

results$results[results$results$p < .05,]
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Node Membership Difference p sig Direction

q31 1 0.033 0.034 * Father > Mother

q11 2 0.038 0.026 * Father > Mother

q20 2 -0.059 0.002 ** Father < Mother

q21 2 -0.043 0.004 ** Father < Mother

q29 2 0.044 0.014 * Father > Mother

q03 3 -0.032 0.048 * Father < Mother

q22 3 0.039 0.030 * Father > Mother

Figure 14 shows a visual representation of these results. The graphs for both Mothers

and Fathers are shown, with more transparently shaded nodes indicating metric invariance,

while solidly shaded nodes indicate metric non-invariance.

Figure 14
EGA metric invariance plot with solid nodes indicating non-invariant items.
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# Corrected p

results$results[adjusted.p < .05,]

Node Membership Difference p-Adjusted sig Direction

q20 2 -0.059 0.064 ** Father < Mother

q21 2 -0.043 0.064 ** Father < Mother

The item text for the 7 items showing metric noninvariance using an uncorrected

p-value are as follows:

• “I prefer to be alone rather than with others.”

• “I feel disconnected or “out of sync” in casual interaction with acquaintances.”

• “I speak too loudly or softly.”

• “I can tell when someone is not interested in what I am saying.”

• “I leave long pauses in conversation.”

• “I am comfortable with unexpected changes in plans.”

• “I have a hard time dealing with changes in my routine.”

Using the BH-procedure to account for multiple comparisons, only items “I speak too

loudly or softly.” and “I can tell when someone is not interested in what I am saying.” are

identified as metric noninvariant at the 0.05 level.
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Discussion

Establishing measurement invariance is crucial for the use of any measurement across

groups in any applied setting. FA approaches are the most commonly used methods to test

measurement invariance. Previous research within network psychometrics has established a

handful of methods for comparing networks, but nothing comparable to FA that accounts for

dimensionality. With network loadings, metric invariance in network psychometrics is

tractable. The current paper proposed a method to test for metric invariance using a

permutation test on network loadings in the EGA framework. To compare the proposed

method to existing FA methods, a simulation study was conducted manipulating sample size,

loadings difference, and correlation between factors to compare the proposed method to

traditional methods in FA. Three methods in the FA framework were used to test partial

metric invariance: Fixed, Free, and Wald. In all four methods, we tested for configural,

metric, and partial metric invariance. In general, the novel network psychometrics approach

performed as well as, and in some cases, better than the FA methods.

Testing for partial metric invariance in all methods necessitated a MCP due to

multiple hypotheses being tested. Most MCPs control FWER with the BH-procedure

correcting for a portion of significant findings. Given the negligible consequences of falsely

identifying noninvariant items, our suggestion is that there should be greater emphasis on

correctly identifying noninvariant items rather than invariant items. The BH-procedure is

recommended because it balances what might otherwise be overly conservative correction

using other MCP methods (e.g., Bonferroni).

With data simulated across two groups with two factors and one item on one factor,

results indicated that applying the BH-procedure provided a gain in the correct identification

of invariant items but not noninvariant items. This result is particularly true when the

difference between loadings was small suggesting that the p-value correction may cause truly

noninvariant items to be classified as invariant. Our results demonstrate this effect on the
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Hit Rate: average Hit Rate, in general, was higher for for all items except noninvariant items.

For the specific methods evaluated in this study, the proposed method performed

similarly to FA methods Fixed and Wald and in certain data conditions performed slightly

better. The Free method showed some inconsistencies and was outperformed by the

proposed method, Fixed, and Wald. When the difference in loadings was higher, all methods

correctly identified the noninvariant item, regardless of p-value correction. But, when the

difference in loadings was lower, sample size and interfactor correlation affected the accuracy

for the noninvariant item with the uncorrected p-value being more accurate in some cases.

The proposed method was slightly less influenced by this effect than the other methods.

With a smaller or different sample sizes, the proposed method’s accurate identification of

noninvariant item was slightly better than the other methods. Importantly, as the

correlation between factors increased, the accuracy decreased when sample size was either

smaller or disparate. All four methods are performing highly and comparably at identifying

invariant variables. The Free method overall showed lower accuracy overall but performed

comparably at correctly identifying noninvariant items.

All together, these results indicate that the proposed method is comparable to

traditional FA methods. One promising result from our study is that the proposed method

was less impacted by disparate sample sizes, which are a known challenge for FA methods (F.

F. Chen, 2007; Kaplan & George, 1995). Another benefit of the network psychometrics

approach is that it does not require any intensive model specifications (in contrast to FA

methods) and can be feasibly implemented in a few lines of code in commonly used software

(R). The ease of this approach mitigates many of the concerns that are raised about the

proper application of measurement invariance methods (Schroeders & Gnambs, 2018).

In terms of applying an MCP, the results indicate that including a p-value correction

provides a gain in the ability of each method to correctly identify invariant items, but in

some instances may hinder their ability to correctly identify noninvariant items, particularly
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for FA. This finding is problematic because the goal of the method is to properly identify

noninvariant items. Our findings question whether an MCP is useful to identify noninvariant

items. The Hit Rate results indicate that uncorrected p-values are more accurate when the

difference in loadings is lower and equally as accurate when the difference in loadings is

higher. As is also seen by the results of Specificity, there is a negligible effect of falsely

identifying an item as noninvariant. As a general guideline, we recommend that noninvariant

variables identified both MCP corrected and uncorrected p-values should be evaluated. The

researcher can at that point can conduct a risk assessment based on their specific research

question and context. Another alternative is to change the α level when applying the MCP.

In the Appendix we have included the all results with an additional condition where the

MCP corrected p-values are assessed for significance at the α = .10 level. The results

indicate that this method slightly improves the accuracy of identifying noninvariant items for

the proposed method but makes no impact for FA.

The use of any latent variable measure across qualitatively distinct groups should

necessitate the testing of measurement invariance. The proposed method performs well at

identifying noninvariant items across data conditions and shows promise at improved

identification over FA when sample sizes are smaller or disparate. Although network

psychometrics have different substantive interpretations than FA models, the proposed

method is statistically consistent with FA measurement invariance methods when the data

generating model is a factor model. An added benefit of the network psychometric approach

is that it holds less stringent assumptions about the data (e.g., local independence) and

therefore can be applied in broader contexts (e.g., topic modeling) (H. Golino et al., 2022;

Kjellström & Golino, 2019).

One limitation of the present study is that the simulated conditions were narrow. The

generating model always had two factors with six variables and only one variable as

noninvariant. Further, we generated data was continuous and without skew. In applied data,

it is more common to have ordinal data with skew. Future work should verify our findings in
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more extensive conditions that better mirror applied data (e.g., categorical and skew data,

multiple factors, different number of variables per factor, multiple noninvariant items on one

or more factors). Another limitation is that this study only measurement invariance when

the data generation model was a factor model. Under applied circumstances, psychologists

have considered nearly all scales as a latent variable model and therefore our data generation

follows the assumptions that most applied researchers already hold about their data. That

said, the effectiveness of measurement invariance methods, including the one proposed here,

should be evaluated with alternative data mechanisms such as a small-world network model.

Before recommending the proposed approach over more traditional FA methods, further

investigation into these limitations is necessary.
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Appendix

Hit Rate

Figure 15
Mean Hit Rate across all items split by MCP corrected and uncorrected p-values, method, and
condition.

Overall Metrics

Table 2
Overall Metrics by Method

Sensitivity F1 Specificity
Type Uncorrected a = .05 Corrected a = .05 Corrected a = .10 Uncorrected a = .05 Corrected a = .05 Corrected a = .10 Uncorrected a = .05 Corrected a = .05 Corrected a = .10
EGA 0.99 0.93 0.96 0.76 0.91 0.87 0.94 0.99 0.98
Fixed 0.96 0.88 0.91 0.76 0.88 0.84 0.95 0.99 0.98
Free 0.98 0.93 0.95 0.65 0.83 0.76 0.90 0.97 0.95
Wald 0.97 0.89 0.91 0.77 0.89 0.85 0.95 0.99 0.98
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Sensitivity

Figure 16
Sensitivity split by MCP corrected and uncorrected p-values, method, and condition.
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F1

Figure 17
F1 split by MCP corrected and uncorrected p-values, method, and condition.
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Specificity

Figure 18
Specificity split by MCP corrected and uncorrected p-values, method, and condition.
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