Psychological Methods

Dimensionality Assessment in Bifactor Structures With Multiple General Factors: A Network Psychometrics Approach

Marcos Jiménez, Francisco J. Abad, Eduardo Garcia-Garzon, Hudson Golino, Alexander P. Christensen, and Luis Eduardo Garrido
Online First Publication, July 6, 2023. https://dx.doi.org/10.1037/met0000590

CITATION
Jiménez, M., Abad, F. J., Garcia-Garzon, E., Golino, H., Christensen, A. P., \& Garrido, L. E. (2023, July 6). Dimensionality Assessment in Bifactor Structures With Multiple General Factors: A Network Psychometrics Approach. Psychological Methods. Advance online publication. https://dx.doi.org/10.1037/met0000590

Dimensionality Assessment in Bifactor Structures With Multiple General Factors: A Network Psychometrics Approach

Marcos Jiménez ${ }^{1}$, Francisco J. Abad ${ }^{1}$, Eduardo Garcia-Garzon ${ }^{2}$, Hudson Golino ${ }^{3}$, Alexander P. Christensen ${ }^{4}$, and Luis Eduardo Garrido ${ }^{5}$
${ }^{1}$ Department of Social Psychology and Methodology, Universidad Autónoma de Madrid
${ }^{2}$ Department of Psychology, Universidad Camilo José Cela
${ }^{3}$ Department of Psychology and Human Development, University of Virginia
${ }^{4}$ Department of Psychology, Vanderbilt University
${ }^{5}$ School of Psychology, Pontificia Universidad Católica Madre y Maestra

Abstract

The accuracy of factor retention methods for structures with one or more general factors, like the ones typically encountered in fields like intelligence, personality, and psychopathology, has often been overlooked in dimensionality research. To address this issue, we compared the performance of several factor retention methods in this context, including a network psychometrics approach developed in this study. For estimating the number of group factors, these methods were the Kaiser criterion, empirical Kaiser criterion, parallel analysis with principal components $\left(\mathrm{PA}_{\mathrm{PCA}}\right)$ or principal axis, and exploratory graph analysis with Louvain clustering $\left(\mathrm{EGA}_{\mathrm{LV}}\right)$. We then estimated the number of general factors using the factor scores of the first-order solution suggested by the best two methods, yielding a "second-order" version of PA PCA $\left(\mathrm{PA}_{\mathrm{PCA}-\mathrm{FS}}\right)$ and $\mathrm{EGA}_{\mathrm{LV}}\left(\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}\right)$. Additionally, we examined the direct multilevel solution provided by $\mathrm{EGA}_{\mathrm{LV}}$. All the methods were evaluated in an extensive simulation manipulating nine variables of interest, including population error. The results indicated that $\mathrm{EGA}_{\mathrm{LV}}$ and $\mathrm{PA}_{\mathrm{PCA}}$ displayed the best overall performance in retrieving the true number of group factors, the former being more sensitive to high crossloadings, and the latter to weak group factors and small samples. Regarding the estimation of the number of general factors, both $\mathrm{PA}_{P C A-F S}$ and $E G A_{L V-F S}$ showed a close to perfect accuracy across all the conditions, while $\mathrm{EGA}_{\mathrm{LV}}$ was inaccurate. The methods based on EGA were robust to the conditions most likely to be encountered in practice. Therefore, we highlight the particular usefulness of $\mathrm{EGA}_{\mathrm{LV}}$ (group factors) and $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$ (general factors) for assessing bifactor structures with multiple general factors.

Translational Abstract

The accuracy of factor retention methods for structures with one or more general factors, like the ones typically encountered in fields like intelligence, personality, and psychopathology, has often been overlooked in dimensionality research. To address this issue, we compared the performance of several factor retention methods in this context, including a network psychometrics approach developed in this study. For estimating the number of group factors, these methods were the Kaiser criterion, empirical Kaiser criterion, parallel analysis with principal components $\left(\mathrm{PA}_{\mathrm{PCA}}\right)$ or principal axis, and exploratory graph analysis with Louvain clustering $\left(\mathrm{EGA}_{\mathrm{LV}}\right)$. We then estimated the number of general factors using the factor scores of the first-order solution suggested by the best two methods, yielding a "second-order" version of PA ${ }_{\text {PCA }}$ $\left(\mathrm{PA}_{\mathrm{PCA}-\mathrm{FS}}\right)$ and $E G A_{\mathrm{LV}}\left(\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}\right)$. Additionally, we examined the direct multilevel solution provided

Eduardo Garcia-Garzon (D) https://orcid.org/0000-0001-5258-232X
*This research was supported by Grant PSI2017-85022-P (Ministerio de Ciencia, Innovación y Universidades, Spain) and the UAM IIC Chair Psychometric Models and Applications. Luis Eduardo Garrido is supported by Grant 2018-2019-1D2-085 from the Fondo Nacional de Innovación Desarrollo Científico y Tecnológico (FONDOCYT) of the Dominican Republic. The authors declare no potential conflict of interest.
The results of this work were presented at the XVII Congress of the Spanish Association of Methodology for the Social Sciences (AEMCCO XVII), and the manuscript was published as a preprint in the PsyArXiv repository at https://psyarxiv.com/2ujdk/.

The bifactor package is available at https://github.com/Marcosjnez/ bifactor and all the files necessary to reproduce the simulation data, analyses, and figures can be found at https://osf.io/u7qwj/. The data used in this manuscript are open-access and were obtained from https:// osf.io/72zp3/. The experiment materials are available at https://osf.io/ u7qwj/.
(3) The experimental materials are available at http://dx.doi.org/10.23668/ psycharchives. 8261.

Correspondence concerning this article should be addressed to Eduardo Garcia-Garzon, Universidad Camilo José Cela, Villafranca del Castillo, 28692 Madrid, Spain. Email: e.garcia@shakersworks.com

Abstract

by $\mathrm{EGA}_{\mathrm{Lv}}$. All the methods were evaluated in an extensive simulation manipulating nine variables of interest, including population error. The results indicated that $\mathrm{EGA}_{\mathrm{LV}}$ and $\mathrm{PA}_{\mathrm{PCA}}$ displayed the best overall performance in retrieving the true number of group factors, the former being more sensitive to high crossloadings, and the latter to weak group factors and small samples. Regarding the estimation of the number of general factors, both $\mathrm{PA}_{\text {PCA-FS }}$ and $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$ showed a close to perfect accuracy across all the conditions, while $\mathrm{EGA}_{\mathrm{LV}}$ was inaccurate. The methods based on EGA were robust to the conditions most likely to be encountered in practice. Therefore, we highlight the particular usefulness of $\mathrm{EGA}_{\mathrm{LV}}$ (group factors) and $\mathrm{EGA}_{\text {LV-FS }}$ (general factors) for assessing bifactor structures with multiple general factors.

Keywords: dimensionality assessment, exploratory bifactor analysis, exploratory graph analysis, hierarchical data, parallel analysis

Supplemental materials: https://doi.org/10.1037/met0000590.supp

Dimensionality assessment plays a central role in psychometrics, as it constitutes one of the cornerstone decisions during test validation. It is known that a wrong assessment misguides the construction and refinement of psychological instruments, undermining also the interpretability of the results from the forthcoming data analysis. However, simulation studies that focus on bifactor structures with multiple general factors are lacking in dimensionality research, and it is uncertain how to proceed when assessing the dimensionality of these structures. This comes as a surprise given the current popularity of bifactor models in fields like intelligence (Beaujean, 2015), personality (Abad et al., 2018), and psychopathology (Bornovalova et al., 2020), where psychometric theories often comprise multiple general factors.

If we had reliable methods for assessing such complex structures, we could test the evidence in favor or against the theories underpinning these fields. Therefore, the aim of this study was three-fold: firstly, investigating for the first time the capability of some popular factor retention methods to uncover the number of group factors in bifactor structures with one or multiple general factors. The second goal of the study involved testing the performance of two new methods that we developed to detect the number of general factors in these structures. Finally, the third goal consisted of showing how these methods can be applied to uncover the hierarchical structure of the HEXACO-100 using open data.

Bifactor Structures With Multiple General Factors

The main feature of bifactor models is that items are allowed to simultaneously load on a collection of group factors (e.g., generosity and tolerance), also called specific factors, and one general factor (e.g., agreeableness), with the group factors representing narrower traits that explain the common variance that is left after accounting for the general factor (Reise, 2012).

Although the development of exploratory bifactor techniques is still an active line of research, with proposals involving analytic rotation criteria (Jennrich \& Bentler, 2011) and target-based procedures (Abad et al., 2017; Garcia-Garzon et al., 2019), they have been recently generalized to cover more than one general factor. Some examples are the two-tier hierarchical model of Tian and Liu (2021) and the exploratory bifactor model with multiple general factors of Jiménez et al. (2023; Figure 1). These generalizations have the advantage of estimating several bifactor structures in a single model, uncovering relationships that would remain hidden if we performed independent bifactor analyses for each domain of the factor structure (e.g., correlations and cross-loadings among the general factors).

The incorporation of multiple general factors of the bifactor model reflects the consensus that many psychological phenomena are hierarchically organized, with the semantic content of narrow traits being subsumed into broader, multiple general factors. ${ }^{1}$ In fact, there have already been some efforts to explore and test these hierarchical organizations, such as the Hierarchical Taxonomy of Psychopathology (HiTOP; Kotov et al., 2017; Ringwald et al., 2023), which is a dimensional alternative to the Diagnostic and Statistical Manual of Mental Disorders (DSM) that conceptualizes psychopathology across different strata, namely symptoms, syndromes, subfactors, and spectra. Detecting the organization of such general traits is essential to make a comprehensive assessment of the main pathological features of patients as well as to facilitate the communication of diagnoses among mental health researchers and professionals. In these regards, the bifactor model provides a way to the estimation of general traits that are concomitant to the narrower ones.

Despite recent advancements in exploratory bifactor analysis, its application still requires a decision regarding the number of group and general factors to extract. Up to now, simulation studies including general factors are scarce and usually focus on structures with second-order general factors instead of on the broader class of bifactor structures. Bifactor models are only equivalent to second-order models when proportionality constraints between the group and general factors are satisfied (Mansolf \& Reise, 2016), so simulations covering the specific bifactor case are required to understand what factor retention methods are suited to assess unrestricted hierarchical organizations. In this context, some researchers have already investigated the behavior of parallel analysis (PA) methods (Crawford et al., 2010; Green et al., 2015, 2016, 2018; Levy et al., 2021). However, the extent to which other factor retention methods work for this purpose is unknown and the quality of the recovery of the number of general factors remains largely untested.

Dimensionality Assessment Methods

To overcome the lack of dimensionality assessment research in bifactor structures with multiple general factors, we designed an exhaustive simulation study. In this section, we review the rationale behind all the factor retention methods that we decided to include in the simulation to estimate the number of group factors. We also

[^0]Figure 1
Illustration of a Bifactor Model With Two General Factors (G) and Four Group Factors (S) for 12 Indicators (X)

Note. The gray arrows represent cross-loadings among the group factors, with each group factor having an indicator that cross-load on another group factor.
mention their qualities and pitfalls as reported in the simulation literature. Finally, we describe a new procedure to determine the number of general factors.

The Kaiser Criterion

The Kaiser criterion (K1; Kaiser, 1960), also known as the eigenvalue-greater-than-one criterion, is one of the first and most popular factor retention methods. According to K1, the first k greater-than-one eigenvalues of a correlation matrix are indicative of k factors. This criterion was devised under the rationale that substantive factors should explain at least more variance than the average variance of the variables, which is one for correlation matrices, and to prevent the estimated factors from having negative reliability (Cliff, 1988). However, K1 gives an asymptotic lower bound for the number of true dimensions (Guttman, 1954). At the sample level, its low accuracy has been replicated by a large body of simulation research (Auerswald \& Moshagen, 2019; Ruscio \& Roche, 2011; Yeomans \& Golder, 1982; Zwick \& Velicer, 1986).

The poor performance of K1 can be attributed to the bias of the sample eigenvalues. The first sample eigenvalue is the maximum value obtained from the optimization problem $\operatorname{argmax}_{\mathbf{x} \in \mathbb{Q}} \mathbf{x}^{\top} \mathbf{S x}$, where \mathbf{S} is the sample correlation matrix and \mathbf{x} is estimated from the set of unit vectors \mathbb{Q}. Subsequent eigenvalues are estimated similarly, but constraining the new estimated vectors (i.e., eigenvectors) to remain orthogonal to all the previous ones. This serial dependency results in the first sample eigenvalues being upwardly biased, as they have more variance to capitalize on by chance with fewer constraints. Thus, the bias of the sample eigenvalues is inversely related to the sample size and positively related to the number of variables, as there is more noise in small samples with a large number of variables, leading K1 to overestimate the true number of factors.

However, learning this important shortcoming has not prevented the widespread use of K1. Goretzko et al. (2021) reviewed the exploratory factor analysis literature published between 2007 and 2017 in two psychological journals with a special focus on test
development and found that K1 was the most common method either when several factor retention methods were simultaneously used (55.6%) and when a single method was used (10.5%). To our knowledge, the performance of K1 has not been investigated in the presence of general factors in a bifactor context.

The Empirical Kaiser Criterion

Braeken and Van Assen (2017) proposed the empirical Kaiser criterion (EKC), a modification of K1 that considers the serial dependency between the sample eigenvalues. EKC compares the sample eigenvalues to reference eigenvalues (λ^{EKC}) that are sequentially computed under a null model with no latent factors. Asymptotically, if the variables are normally distributed, the eigenvalues of the sample correlation matrix follow the Mařenko-Pastur distribution (Mařenko \& Pastur, 1967). Hence, Braeken and Van Assen (2017) set the first reference eigenvalue under the null model $\left(\lambda_{1}^{\mathrm{EKC}}\right)$ to the expected value of the first sample eigenvalue from the Mar enko-Pastur distribution, $(1+\sqrt{J / n})^{2}$, where n is the sample size and J is the number of variables. The subsequent reference eigenvalues, $\lambda_{j}^{\mathrm{EKC}}$ for $j=\{2,3, J\}$, are then computed multiplying this value by the average variance that is left after taking out the first $j-1$ factors, $\left(J-\sum_{j=0}^{j-1} \lambda_{j}\right) /(J-j+1)$, where $\lambda_{0}=0$. The resulting reference eigenvalues can then be interpreted as an estimate of the population value of λ_{j} if the null model of conditional independence was true after accounting for $j-1$ factors.

Altogether, the overall formula for computing the reference eigenvalues can be written as

$$
\begin{equation*}
\lambda_{j}^{\mathrm{EKC}}=\max \left(\frac{J-\sum_{j=0}^{j-1} \lambda_{j}}{J-j+1}(1+\sqrt{J / n})^{2}, 1\right) . \tag{1}
\end{equation*}
$$

Notice that the minimum reference eigenvalue is set to one to guarantee that, at the population level, K1 and EKC match in the number of factors to retain, representing a lower bound for the true number of factors (Guttman, 1954).

EKC has been suggested to be more robust than PA in conditions involving few variables per factor and high factor correlations (Auerswald \& Moshagen, 2019; Braeken \& Van Assen, 2017) and in the presence of cross-loadings in multivariate normal data (Li et al., 2020). However, its performance has not been tested in bifactor structures.

Parallel Analysis

PA (Horn, 1965) has been considered the gold-standard method for dimensionality assessment for many decades, with many simulation studies recommending its use for either continuous (Fabrigar et al., 1999; Lim \& Jahng, 2019; Zwick \& Velicer, 1986) and ordinal data (Garrido et al., 2013, 2016; Timmerman \& Lorenzo-Seva, 2011). PA would emulate the sampling process of the original correlation matrix if no latent factors were present, controlling the impact that the sample size and the number of variables bear in the magnitude of the eigenvalues. Similarly to the EKC method, PA compares the sample eigenvalues to reference eigenvalues obtained by simulating data from a null model, with the first k sample eigenvalues greater than their corresponding reference eigenvalues being indicative of k meaningful factors.

The reference eigenvalues can be computed in many ways. In the original formulation, Horn (1965) performed the principal
component analysis in a large number of $n \times J$ matrices of uncorrelated normally distributed random variables, using the average of the empirical distribution of the eigenvalues as the reference eigenvalues. Later proposals involved the use of the 95th percentile of the empirical distribution instead of the mean (Buja \& Eyuboglu, 1992; Glorfeld, 1995), the resampling of the observed data matrix for generating new random data ($\mathrm{PA}_{\mathrm{PCA}}$; Buja \& Eyuboglu, 1992), the replacement of principal components either by principal axis factoring ($\mathrm{PA}_{\mathrm{PAF}}$; Humphreys \& Ilgen, 1969) or minimum rank factor analysis (Timmerman \& Lorenzo-Seva, 2011), and the assessment of each j factor in a sequential manner, taking the $j-1$ factor model as the null model for generating random data (Green et al., 2012).

Several simulation studies comparing different versions of PA have found that even though no single method outperformed others in all conditions, $\mathrm{PA}_{\text {PCA }}$ presented the highest overall accuracy (Lim \& Jahng, 2019; Xia, 2021). However, other authors support employing $\mathrm{PA}_{\mathrm{PAF}}$ instead, arguing that it outperforms $\mathrm{PA}_{P C A}$ under conditions with multiple correlated factors (Crawford et al., 2010; Keith et al., 2016). In the particular case of structures including general factors (in both second-order and bifactor structures), Crawford et al. (2010) found that $\mathrm{PA}_{P C A}$ tended to recover the number of general factors while $\mathrm{PA}_{\text {PAF }}$ accurately recovered the number of group factors. However, Lim and Jahng (2019) noted that this superiority vanishes when the realistic condition of population error is included. This current controversy prompted the examination of both methods in our simulations.

Finally, concerning the cutoff value needed to derive the reference eigenvalues, Xia (2021) showed that the performance of PA ${ }_{P C A}$ using the 95th percentile was more robust to model misspecification than the mean value. In contrast, the mean of the empirical eigenvalues was more robust to multiple correlated factors. These results are explained by stringent cutoffs ignoring minor factors and larger cutoffs avoiding the collapse of correlated factors.

Exploratory Graph Analysis

Network psychometrics is an alternative method to factor analysis to model and interpret psychological data. In a network model, a random variable is a node connected to other nodes by edges representing their relationship after conditioning on all the other variables. In the same way that factor models are commonly displayed with diagrams, networks models are visualized with a graph containing all the nodes and edges connecting them, with nodes belonging to the same cluster being placed closer, and edge's thickness representing the strength of the associations between the nodes (Figure 2).

For multivariate normal data, the most straightforward way to model such pairwise relationships among the variables is using their partial correlations. This is the simplest way of estimating a Gaussian graphical model (GGM; Epskamp et al., 2018). However, Epskamp and Fried (2017) warned that when two variables are conditionally independent, the partial correlation matrix usually reflects spurious relationships due to sampling variation, leading to large standard errors and unstable parameter estimates. As a solution, regularization techniques such as the graphical least absolute shrinkage and selection operator (GLASSO; Friedman et al., 2008) are used to estimate sparse partial correlations. GLASSO regularization contains a tuning parameter controlling the sparsity of the network that is selected by minimizing a

Figure 2
Graph of a Network Estimated With a Gaussian Graphical Model and GLASSO

Note. Each color represents a factor and the items were clustered with the Louvain algorithm. GLASSO = graphical least absolute shrinkage and selection operator. See the online article for the color version of this figure.
complexity function such as the Extended Bayesian Information Criterion (EBIC; Chen \& Chen, 2008). With this approach, small partial correlations are shrunk toward zero, yielding a more parsimonious and interpretative network with more unconnected nodes reflecting conditional independence. Latent factors underlying the data can then be related to clusters of nodes, with edges within a cluster being stronger than between clusters (Golino \& Epskamp, 2017). Such reciprocity between clusters of nodes and latent variables is not only justified by the fact that network models are statistically consistent with factor models under certain conditions (Bork et al., 2021) but also supported by empirical research and simulation studies (Golino \& Demetriou, 2017; Golino, Shi, et al., 2020).

Network psychometrics provides a foundation for Exploratory Graph Analysis (EGA; Golino \& Epskamp, 2017) as a factor retention method. Firstly, EGA estimates the partial correlations between the variables by fitting a GGM with the GLASSO regularization and then applies a community detection algorithm for weighted networks to classify items into clusters. Usually, the clustering is achieved by maximizing modularity, an index measuring the extent to which nodes within a cluster are more connected than between clusters. Christensen et al. (2020a) performed a simulation comparing eight clustering algorithms and found that the Louvain (Blondel et al., 2008) and Walktrap (Pons \& Latapy, 2006) algorithms (both based on modularity) attained the best overall results in identifying the true number of dimensions.

Interestingly, the Louvain algorithm can also provide a direct estimate of the number of general factors. However, despite this appealing feature, no EGA method has ever been tested in bifactor structures.

Assessing the Number of General Factors

If the number of group factors and their configural structure were known, we could roughly estimate the number of general factors by summing or averaging the items corresponding to each scale and
then employing any previous factor retention method over the resulting scores. However, this strategy is unrealistic because the groupfactor dimensionality and the factor pattern are often unknown or unclear.

One alternative is Goldberg's Bass-Ackwards method (Goldberg, 2006), a sequential top-down approach that starts by estimating a unidimensional exploratory factor model and continues extracting and rotating more factors until no variable primarily loads on a factor. Then, the factor scores for each factor solution are estimated, and their correlations are used to build a hierarchical representation of all the factor solutions, with the first-factor solution depicted at the top, followed by the two rotated factors solution, and so on. Then, high correlations between an upper and a lower-order factor indicate the perpetuation of the factor down the hierarchy. In contrast, medium correlations between a certain upper and lower-order factor indicate that the former was split into yield the latter, a narrower factor.

An inconvenient of the Bass-Ackwards method is that it rests on a top-down approach, assessing first the higher-order factors in the hierarchy. Condon et al. (2020) warned that top-down approaches are at risk of missing important features of the factor structure. For instance, they are unable to identify the presence of gaps in content concerning the higher-order domains and are also susceptible to the jingle-jangle fallacy (e.g., we are at risk of labeling with different names the same trait down the hierarchy (jingle) and using the same label for different traits (jangle)). In contrast, they argue for a bottom-up approach that starts by assessing all the traits or nuances that exhaust a domain, taking into account item complexity and facilitating item revision and content expansion.

An example of a bottom-up approach is the one proposed by Golino, Thiyagarajan, et al., 2020). First, the authors estimated the number of group factors using EGA. Secondly, they estimated a loading matrix for the group factors from the fitted network and obliquely rotated the structure employing geomin. Finally, they used the resulting first-order latent factor correlation matrix to perform a secondorder EGA, yielding an estimation of the number of general factors. However, this procedure was developed to investigate the relationship between several cognitive and health-related variables in the context of aging research, and no exhaustive simulation was performed to test its accuracy under different scenarios of interest.

In this study, we followed a bottom-up method based on the correlation between the factor scores of the group factors, as they are expected to reflect the latent dependencies between the general factors. We would like to remark that we are not the first in suggesting nor using factor scores from lower-order factors to determine the number of general factors (see Friborg et al., 2009; Milfont \& Duckitt, 2004). However, previous proposals were not fully explicit or included steps that did not align with what we understand for best practices (e.g., using composites of items for estimating the factor scores, performing orthogonal rotation, or using K1 to assess the number of general factors). The solution that we propose is straightforward and can be obtained through the following steps: (a) estimate the number of group factors with some factor retention method; (b) perform an oblique exploratory factor analysis of the observed correlation matrix extracting the number of group factors suggested in the previous step; (c) estimate the factor scores with some method that contemplates correlated factors (e.g., Thurstone's regression method); and (d) estimate the number of general factors on the factor scores using the same factor retention method employed in the first step.

Method

Simulation Design

Following a similar design to these found by Abad et al. (2017), Garcia-Garzon et al. (2021), and Jiménez et al. (2023), nine variables were manipulated to create realistic full-rank bifactor structures with one or multiple general factors: (a) number of general factors (N.GF: 1, 2, 3); (b) correlation between the general factors (COR.GF: 0, 0.30); (c) sample size (N: 500, 1,000, 2,000, 5,000); (d) number of group factors per general factor (N.GRF: 4, 5, 6); (e) number of variables per group factor (VAR.GRF: 4, 6, 8, 10); (f) factor loadings on the general factors (LOAD.GF: low, medium); (g) factor loadings on the group factors (LOAD.GRF: low, medium); (h) model error or misfit (MF: zero, close); and (i) cross-loadings among the group factors (CROSS.GRF: $0,0.15,0.30$). These variables were crossed to yield a final number of 5,760 conditions, after removing the incompatible conditions in which the number of general factors was set to one but the correlation between the general factors was not zero.

Factor loadings ranged from 0.30 to 0.50 for the low condition and from 0.40 to 0.60 for the medium condition. The loadings on the general factors were sampled from a uniform distribution, whereas the loadings on the group factors varied by equal increments across their variables (e.g., for the low condition with four items per group factor, the population factor loadings were $0.30,0.37,0.43$, and 0.50). To create conditions with cross-loadings, the item with the greatest loading on each group factor had a cross-loading of 0.15 or 0.30 in another group factor. We maintained the communality constant by subtracting a small value from the remaining nonzero item loadings to make the conditions with and without crossloadings comparable (see Abad et al., 2017). To illustrate how the data were simulated under these conditions, Table 1 shows a randomly generated loading pattern matrix corresponding to a bifactor model before and after introducing the cross-loadings. Bifactor structures with more than one general factor were created by simply joining these single bifactor structures.

Population Misfit

In real situations, the population correlation matrix between the variables does not resemble the correlation matrix reproduced by the true model parameters (MacCallum, 2003). In other words, all models are misspecified because of many unmodeled minor factors explaining some common item variance. According to this perspective, the true number of factors underlying a population correlation matrix corresponds to the number of major factors, and the resulting population misfit is interpreted as a trivial, nonsubstantive common variance. In our simulations, a population misfit was created following the method proposed by Cudeck and Browne (1992). This method generates small random values that are added to the population-implied correlation matrix such that fitting a confirmatory factor model with unweighted least squares (ULS) reproduces the intended amount of misfit while preserving a global minimum at the original model parameters, as long as the error is not excessive.

We selected the population standardized root mean square residual (SRMR) as the indicator of the amount of global misfit, following Shi et al. (2018) and Ximénez et al. (2022). Shi et al. (2018) investigated the behavior of the population SRMR under different types and degrees of model misspecification to suggest a corrected
cutoff for the population SRMR that corresponds to a close-fitting model. They established that a close-fitting model at the population level exists when (a) the largest absolute value of the standardized residual covariance matrix ≤ 0.10, and (b) $\mathrm{SRMR} \leq 0.05 \times \bar{R}^{2}$, where \bar{R}^{2} is the average communality of the manifest variables in the population. For example, for conditions with medium loadings (0.50) on both group and general factors, an exact close fit is achieved if SRMR $=0.05 \times\left(0.50^{2}+0.50^{2}\right)=0.025$, and the absolute value of the largest residual is ≤ 0.10.

The choice of the SRMR was motivated by several reasons. Firstly, the easiness of interpretation of the index. Second, the estimated SRMR is more robust than RMSEA and CFI to different estimation methods, like maximum likelihood and ULS (Xia \& Yang, 2019). Finally, the unbiased SRMR is less sensitive than other fit indexes to many of the variables manipulated in the current simulation (i.e., incidental parameters; Saris et al., 2009), like the number of items or the number of factors (Fan \& Sivo, 2007; Shi et al., 2018; Ximénez et al., 2022). For completeness, we also carried out the simulations without population error to use the results as a baseline for comparison.

Data Generation and Analysis

Simulations were run in the R programming language, Version 4.2.2 (R Core Team, 2022). A population correlation matrix for each condition was created and stored using the sim_factor function from the R package bifactor, Version 0.1.0 (Jiménez, Abad, GarciaGarzon, Garrido, \& Franco, 2022). Regarding the conditions involving population error, Cudeck and Browne (1992) warned that their method only ensures a global minimum at the intended discrepancy value when the generated error is small enough. Hence, to confirm that close fit was ascertained in each condition, a confirmatory factor analysis using the true model specification was fitted with ULS, and the resulting SRMR was compared with the intended SRMR at a tolerance of 1×10^{9}. Similarly, we also checked whether the estimated parameters were equal to the population parameters. The sim_factor function was iterated until a positive definite correlation matrix with the error was obtained and satisfied the aforementioned requirements. Table A1 in the Appendix displays the average and worst misfit values across every variable level for SRMR, as well as two additional fit indices (CFI and RMSEA), and the maximum absolute residual.

Once the population structures were created, we extracted 50 random samples from a multivariate normal distribution for each population correlation matrix using the function mvrnorm from the R package MASS, Version 7.3-57 (Venables \& Ripley, 2002). The methods that we tested to identify the number of group factors in these samples were $\mathrm{K} 1, \mathrm{EKC}, \mathrm{PA}_{\mathrm{PCA}}, \mathrm{PA}_{\mathrm{PAF}}$, and $\mathrm{EGA}_{\mathrm{LV}}$. As our simulations included model error and at the same time the group factors were correlated due to the presence of the general factors, we decided to conduct $\mathrm{PA}_{\text {PCA }}$ and $\mathrm{PA}_{\text {PAF }}$ with both the mean and the 95th percentile cutoffs. In addition, we decided to test EGA with the Louvain algorithm $\left(\mathrm{EGA}_{\mathrm{LV}}\right)$ because it performs at least as well as the Walktrap algorithm and potentially provides a solution with multilevel clusters (Christensen et al., 2020a). That is, the Louvain algorithm creates clusters of items that, in turn, may be grouped into higher-order clusters. Thereby, the lowest-level cluster that $\mathrm{EGA}_{\mathrm{LV}}$ provided was used to estimate the number of group factors, while the highest-level cluster, when it existed, was taken to be
an estimate of the number of general factors. Another important detail of $E G A_{\mathrm{LV}}$ is that it performs an initial check using the Leading Eigenvector community detection algorithm (LE; Newman, 2006) on the raw correlation matrix. LE is a clustering method that also aims to maximize modularity. To achieve this, the LE algorithm creates a modularity matrix (i.e., a matrix containing the difference between the observed and random edges' strengths), computes its first eigenvector, and chooses the partition that maximizes the modularity index in terms of this first eigenvector. This maximization is obtained when the positive values of the eigenvectors are classified in one cluster and the negative ones are classified in the other cluster. According to Christensen et al. (2020a), LE provides an adequate balance between correctly recovering one and more than one factor. As such, if LE delivered one factor, the data were judged to be unidimensional. Contrary, when it estimated more than one factor, the Louvain algorithm was applied instead.

We developed two new methods based on factor scores to estimate the number of general factors, following the second-order procedure described before, yielding an hierarchical version of both PA $\left(\mathrm{PA}_{\text {PCA-FS }}\right)$ and EGA $\left(\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}\right)$. For these methods, we performed two oblique factor analyses with ULS, extracting the number of factors suggested by $\mathrm{PA}_{\mathrm{PCA}}$ and $\mathrm{EGA}_{\mathrm{LV}}$ and rotating the solution with direct oblimin. Then, we computed the factor scores of each solution using Thurstone's regression method. On the one hand, we decided to use factor scores instead of the factor correlations because the latter would require the assumption of a particular distribution for the factors in order to simulate data for PA. On the other hand, we chose the Thurstone's scores because they maximize validity (i.e., the correlation between the factor scores and their corresponding factors), so the proportion of indeterminacy in the factor scores is minimized (Grice, 2001). Finally, for $E G A_{L V-F S}$, we used $E G A_{L V}$ on the factor scores obtained from the first-order solution and extracted the highest-level cluster provided by the Louvain algorithm (using the same LE check for unidimensionality as in the previous step).

We used the function parallel from the R package bifactor to conduct the methods based on PA. For all the PA methods, 100 random data sets were created by within-variable permutation of the empirical data set to obtain the mean and 95th percentile of the eigenvalues under the null model of no latent factors. For the implementation of $E G A_{L V}$, we used the function EGA from the EGAnet package, Version 1.1.0 (Golino \& Christensen, 2022). Importantly, the EGA function does not provide the complete hierarchical solution but automatically returns the dimensions that correspond to the highest-level cluster of the hierarchy. Hence, when the LE algorithm determined that the data were not unidimensional, we analyzed the estimated network with the cluster_louvain function from the R package igraph, Version 1.3.1 (Csardi \& Nepusz, 2006), to obtain the complete mutilevel organization as estimated by the Louvain algorithm.

Following Garrido et al. (2016) and Golino, Shi, et al. (2020), three indices were calculated to diagnose the accuracy of the methods. The first index is the hit rate (HR) or the proportion of correct dimensionality assessments. While HR reflects each method's accuracy, it does not provide information about the direction of the errors. We thus computed the mean bias error (MBE), conceptualized as the average difference between the estimated dimensionality and the true dimensionality, with positive and negative values reflecting overextraction and underextraction of the true number of factors, respectively. Additionally, as these errors may cancel out in specific

Table 1
Simulated Loadings for a Condition With One General Factor, Four Group Factors, and Medium Loadings on Both the General and Group Factors

Item	Simple structure						Cross-loadings					
	G	S1	S2	S3	S4	h^{2}	G	S1	S2	S3	S4	h^{2}
1	0.45	0.60				0.57	0.40	0.56			0.30	0.57
2	0.47	0.53				0.51	0.47	0.53				0.51
3	0.51	0.47				0.48	0.51	0.47				0.48
4	0.58	0.40				0.50	0.58	0.40				0.50
5	0.44		0.60			0.55	0.39	$\underline{0.30}$	0.56			0.55
6	0.58		0.53			0.62	0.58		0.53			0.62
7	0.59		0.47			0.56	0.59		0.47			0.56
8	0.53		0.40			0.44	0.53		0.40			0.44
9	0.53			0.60		0.64	0.48		0.30	0.56		0.64
10	0.41			0.53		0.45	0.41			0.53		0.45
11	0.44			0.47		0.41	0.44			0.47		0.41
12	0.44			0.40		0.35	0.44			0.40		0.35
13	0.54				0.60	0.65	0.49			$\underline{0.30}$	0.56	0.65
14	0.48				0.53	0.51	0.48				0.53	0.51
15	0.55				0.47	0.52	0.55				0.47	0.52
16	0.50				0.40	0.41	0.50				0.40	0.41
Avg.						0.51						0.51

Note. When cross-loadings (underlined) were included, small values were subtracted from the loadings on the general and group factors to maintain the original communality $\left(\mathbf{h}^{2}\right)$.
conditions, we also computed the mean absolute error (MAE), which takes the mean of the absolute error values. Analyses of variance (ANOVA) estimating up to third-order interactions among all the experimental conditions were carried out using the absolute error as the outcome. The partial omega squared $\left(\Omega^{2}\right)$ was then used as an effect size to measure each model coefficient's importance. We decided to report all the main effects and only the interactions whose corresponding Ω^{2} values were greater than 0.14 or close to this threshold for at least one method, following Cohen's criterion for a large effect (Cohen, 1988).

All the simulated data, analysis code, and research materials are available at https://osf.io/u7qwj/.

Results

Firstly, we present the marginal accuracies, biases, and absolute errors obtained by each factor retention method with respect to the true number of group factors. Then, we describe the two and third-order interactions that were found for each method. Thirdly, we describe the same results for the recovery of the number of general factors.

Our results suggested that the mean and the 95 th percentile cutpoints behaved similarly across all the levels of the variables in each PA method. Hence, for simplicity's sake, we will only describe the results of $\mathrm{PA}_{\text {PCA }}$ and $\mathrm{PA}_{\text {PCA-FS }}$ with the mean value and those of $\mathrm{PA}_{\text {PAF }}$ with the 95 th percentile. This decision was motivated by the fact that the mean value was slightly more accurate than the 95th percentile for $\mathrm{PA}_{\text {PCA }}$ and $\mathrm{PA}_{\text {PCA-FS }}$ whereas the 95 th percentile was slightly more accurate than the mean value for $\mathrm{PA}_{\mathrm{PAF}}$.

Recovery of the Number of Group Factors

Overall, $\mathrm{EGA}_{\mathrm{LV}}$ was the method with the highest HR in detecting the number of group factors $(\mathrm{HR}=0.86)$, closely followed by $\mathrm{PA}_{\mathrm{PCA}}$ ($\mathrm{HR}=0.83$), and then by $\mathrm{EKC}(\mathrm{HR}=0.70), \mathrm{PA}_{\mathrm{PAF}}(\mathrm{HR}=0.64)$, and $\mathrm{K} 1(\mathrm{HR}=0.60$; Table 2$)$. If no population model error existed, $\mathrm{PA}_{\mathrm{PAF}}$
would have been considered the best method, with an almost perfect HR of 0.98 . However, its accuracy was severely impacted when considering model error $(\mathrm{HR}[\mathrm{MF}=$ close $]=0.29)$. In a similar vein, EKC and K1 also experimented a strong deterioration under this condition, with absolute drops in accuracy of 0.45 and 0.32 , respectively. In fact, EKC would have been considered the second best method if no population error was simulated, with a HR of 0.93 . On the other hand, the effect of model error on $\mathrm{PA}_{P C A}$ was moderate, whereas $\mathrm{EGA}_{\mathrm{LV}}$ remained robust to population error.

The number of general factors was a critical variable in our results. Under one general factor, the HRs of $\mathrm{EGA}_{\mathrm{LV}}$ and $\mathrm{PA}_{P C A}$ were above 0.95. Whereas increasing the number of general dimensions from one to three decreased the HR of K1 by 0.29 points, those of $\mathrm{EGA}_{\mathrm{LV}}$ and $\mathrm{PA}_{\mathrm{PCA}}$ by about 0.20 points, and that of EKC by 0.16 points, $\mathrm{PA}_{\text {PAF }}$ moderately increased its accuracy. However, the accuracy of $\mathrm{PA}_{\mathrm{PAF}}$ in conditions with three general factors ($\mathrm{HR}[\mathrm{N} . \mathrm{GF}=3$] $=0.65)$ was still inferior to those of $\mathrm{EGA}_{\mathrm{LV}}(\mathrm{HR}[\mathrm{N} . \mathrm{GF}=3]=0.76)$ and $\mathrm{PA}_{\mathrm{PCA}}(\mathrm{HR}[\mathrm{N} . \mathrm{GF}=3]=0.74)$. On the other hand, all the factor retention methods were impaired by the presence of correlations between the general factors, with $\mathrm{EGA}_{\mathrm{LV}}$ presenting the highest performance in this situation (HR[COR.GF $=0.30]=0.84$).

However, $\mathrm{EGA}_{\mathrm{LV}}$ did not always perform best. While it attained almost perfect accuracy in simple structures $(H R[C R O S S . G R F=$ $0]=0.99)$, it showed drops of $0.10(\mathrm{HR}=0.89)$ and 0.29 points $(\mathrm{HR}=0.70)$ when the size of the cross-loadings increased to 0.15 and 0.30 , respectively. On the contrary, $\mathrm{PA}_{\text {PCA }}$ was only moderately affected by the presence of high cross-loadings, with the former attaining the best average performance across high crossloadings conditions $(\mathrm{HR}[\mathrm{CROSS} . \mathrm{GRF}=0.30]=0.79)$. Conversely, $\mathrm{PA}_{\mathrm{PAF}}, \mathrm{K} 1$, and EKC were not affected by item complexity, but their performances were still inferior to those of $\mathrm{EGA}_{\mathrm{LV}}$ and $\mathrm{PA}_{P C A}$ in the presence of medium and high cross-loadings.

Increasing the number of group factors per general factor negatively affected all the methods. $\mathrm{EGA}_{\mathrm{LV}}$ and $\mathrm{PA}_{\mathrm{PAF}}$ were only moderately affected, with the former retaining the highest accuracy across

Table 2
Marginal Hit Rates Across Each Variable Level for Each Factor Retention Method

Variable	Group factors							General factors			
	Kaiser		PA ${ }_{\text {PAF }}$		PA ${ }_{\text {PCA }}$		$\mathrm{EGA}_{\text {LV }}$	PA ${ }_{\text {PCA-FS }}$		$\mathrm{EGA}_{\text {LV }}$	$\mathrm{EGA}_{\text {LV-FS }}$
	K1	EKC	M	95th	M	95th		M	95th		
MF											
Zero	0.76	0.93	0.98	0.98	0.86	0.84	0.87	0.99	0.98	0.10	1.00
Close	0.44	0.48	0.21	0.29	0.81	0.80	0.86	0.99	0.99	0.09	1.00
N											
500	0.33	0.62	0.72	0.79	0.68	0.64	0.84	0.97	0.95	0.06	1.00
1,000	0.55	0.66	0.63	0.69	0.85	0.83	0.86	0.99	0.99	0.09	1.00
2,000	0.72	0.73	0.53	0.57	0.90	0.89	0.87	1.00	1.00	0.11	1.00
5,000	0.81	0.81	0.50	0.51	0.91	0.91	0.89	1.00	1.00	0.13	1.00
N.GF											
1	0.78	0.81	0.52	0.58	0.95	0.94	0.98	1.00	1.00	0.00	1.00
2	0.61	0.71	0.60	0.66	0.87	0.85	0.91	0.99	0.99	0.02	1.00
3	0.49	0.65	0.62	0.65	0.74	0.73	0.76	0.98	0.98	0.22	0.99
COR.GF											
0	0.67	0.67	0.64	0.69	0.87	0.86	0.88	0.99	0.99	0.09	1.00
0.30	0.50	0.61	0.52	0.56	0.77	0.76	0.84	0.99	0.98	0.10	1.00
VAR.GRF											
4	0.90	0.91	0.59	0.67	0.60	0.56	0.75	0.97	0.94	0.25	0.99
6	0.68	0.79	0.59	0.64	0.89	0.87	0.83	1.00	1.00	0.13	1.00
8	0.48	0.62	0.59	0.63	0.93	0.92	0.92	1.00	1.00	0.01	1.00
10	0.34	0.49	0.60	0.62	0.92	0.92	0.95	1.00	1.00	0.00	1.00
N.GRF											
4	0.68	0.77	0.61	0.67	0.88	0.87	0.90	0.99	0.98	0.10	1.00
5	0.60	0.70	0.59	0.64	0.84	0.82	0.86	0.99	0.99	0.10	1.00
6	0.52	0.65	0.57	0.61	0.78	0.76	0.83	0.99	0.99	0.10	1.00
CROSS.GRF											
0	0.61	0.72	0.60	0.65	0.87	0.86	0.99	0.99	0.98	0.07	1.00
0.15	0.60	0.71	0.60	0.64	0.84	0.82	0.89	0.99	0.98	0.08	1.00
0.30	0.59	0.69	0.58	0.63	0.79	0.78	0.70	0.99	0.99	0.14	0.99
LOAD.GRF											
Low	0.52	0.67	0.59	0.64	0.75	0.72	0.80	0.98	0.97	0.18	0.99
Medium	0.68	0.74	0.60	0.63	0.92	0.91	0.93	1.00	1.00	0.02	1.00
LOAD.GF											
Low	0.52	0.68	0.60	0.66	0.88	0.87	0.86	1.00	1.00	0.07	1.00
Medium	0.68	0.73	0.59	0.62	0.79	0.77	0.87	0.98	0.97	0.13	1.00
Total	0.60	0.70	0.59	0.64	0.83	0.82	0.86	0.99	0.99	0.10	1.00

Note. $\mathrm{K} 1=$ Kaiser eigenvalue greater-than-one criterion; $\mathrm{EKC}=$ empirical Kaiser criterion; $\mathrm{PA}_{\mathrm{PAF}}=$ parallel analysis with principal axis factoring; $\mathrm{PA} \mathrm{PCA}=$ parallel analysis with principal components; $\mathrm{PA}_{\mathrm{PCA}-\mathrm{FS}}=$ parallel analysis with principal components on the first-order factor scores; $\mathrm{EGA}=$ exploratory graph analysis; $\mathrm{EGA}_{\mathrm{LV}}=\mathrm{EGA}$ with Louvain; $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}=\mathrm{EGA}$ with Louvain on the first-order factor scores; $\mathrm{MF}=$ population misfit; $N=$ sample size; $\mathrm{N} . \mathrm{GF}=$ number of general factors; COR.GF $=$ correlation between general factors; VAR.GRF $=$ number of indicators per group factor; $\mathrm{N} . \mathrm{GRF}=$ number of group factors per general factor; CROSS.GRF $=$ cross-loadings in the group factors; LOAD.GRF $=$ loadings on the group factors; $\mathrm{LOAD} . \mathrm{GF}=$ loadings on the general factors.
all the levels. However, K1, EKC, and PA PCA were more affected by the increase in the number of group factors from 4 to 6 , showing declines of $0.16,0.12$, and 0.10 points in accuracy, respectively. On the other hand, increasing the number of variables per group factor also increased the accuracy of all the methods but K1, EKC, and PA ${ }_{\text {PAF }}$. EKC and K1 were the most accurate methods across conditions with four variables per group factor with HRs of 0.91 and 0.90 , respectively, but the worst across conditions with eight and 10 variables (HR[VAR.GRF $=10]=0.42$ and HR[VAR.GRF $=10]=$ 0.34 , respectively). Conversely, $\mathrm{PA}_{\mathrm{PCA}}$ benefited by switching from four to six variables per group factor (HR[VAR.GRF $=4$] = 0.60 ; HR[VAR.GRF $=6]=0.89$), but further increases in the number of variables per group factor did not produce substantial gains in accuracy. ${ }^{2}$ Concerning $\mathrm{EGA}_{\mathrm{LV}}$, it obtained the best HR in conditions with the maximum number of variables per group factor $(\operatorname{HR}[$ VAR. $G R F=10]=0.96)$.

We further identified three results of interest. When switching from medium to low loadings on the group factors, $\mathrm{PA}_{\text {PCA }}, \mathrm{K} 1$, $\mathrm{EGA}_{\mathrm{LV}}$, and EKC were negatively impacted, with respective HR drops of $0.17,0.16,0.13$, and 0.07 points, respectively. Again, $\mathrm{EGA}_{\mathrm{LV}}$ was the best method across the most unfavorable condition (e.g., HR[LOAD.GRF $=$ low] $=0.80$). Secondly, concerning the loadings on the general factors, lower loadings were moderately associated with higher HRs for $\mathrm{PA}_{\mathrm{PCA}}$ with an absolute increase of 0.09 points, but negatively impacted K1 and EKC with drops of 0.16 and 0.05 points, respectively. $E G A_{L V}$ remained unaffected

[^1]to the magnitude of the loadings on the general factors, whereas $\mathrm{PA}_{\mathrm{PAF}}$ was robust to the magnitude of the general and group factor loadings. Lastly, the sample size was positively related to the HR of all the factor retention methods, with $\mathrm{PA}_{\mathrm{PAF}}$ being again the exemption. While $\mathrm{PA}_{\mathrm{PAF}}$ presented a good average performance across small sample sizes $(\operatorname{HR}[N=500]=0.80)$, it drastically underperformed as the sample size increased (e.g., $\operatorname{HR}[N=5$, $000]=0.51$). Interestingly, the sample size had very little influence on $\mathrm{EGA}_{\mathrm{LV}}$, and for conditions with a sample size of 2,000 or greater, $\mathrm{PA}_{\mathrm{PCA}}$ slightly outperformed $\mathrm{EGA}_{\mathrm{LV}}$ with a HR about 0.90. K1 and EKC benefited from increased sample sizes but only achieved an overall HR over 0.80 across conditions with a sample of size 5,000.

The results for the MBE (Table 3) revealed that, following the HR results, $E G A_{L V}$ and $\mathrm{PA}_{\mathrm{PCA}}$ were the least biased methods. $E G A_{L V}$ and $P_{P C A}$ underestimated the number of factors, with overall MBEs of -0.29 and -0.44 , respectively. $E G A_{L V}$ underextracted the most in conditions involving few variables per group factor (MBE[VAR.GRF $=4]=-0.76$) and high crossloadings (MBE[CROSS.GRF $=0.30]=-0.75)$. The worst performance of $\mathrm{PA}_{\mathrm{PCA}}$ was observed under weakly defined group factors $(\operatorname{MBE}[V A R . G R F=4]=-1.46 ; \operatorname{MBE}[L O A D . G R F=$ low $]$ $=-0.82)$ and low sample size $(\operatorname{MBE}[N=500]=-1.14)$. Contrary to the underestimation of the previous methods, K1, $\mathrm{PA}_{\mathrm{PAF}}$, and EKC overextracted across all the variable levels with the exemption of $\mathrm{PA}_{\text {PAF }}$ and EKC in conditions with no population error, in which they were unbiased, and EKC in the conditions with the minimum number of variables per group factor. Their overall MBEs were $2.07,1.58$, and 0.63 , respectively, with K1 being particularly prone to overextraction in situations involving small sample size $(\operatorname{MBE}[N=500]=4.84)$, large factor structures $(\operatorname{MBE}[V A R . G R F=10]=4.64 ; \operatorname{MBE}[\mathrm{N} . \mathrm{GF}=3]=$ 3.45; $\mathrm{MBE}[\mathrm{N} . \operatorname{GRF}=6]=2.96$), and low loadings on both the general and group factors (MBE[LOAD.GF = low] $=2.95$; $\operatorname{MBE}[$ LOAD $. \operatorname{GRF}=$ low] $=2.95$). K1 only showed an acceptable performance for the conditions involving the maximum sample size and the minimum number of variables per group factor. The performance of $\mathrm{PA}_{\mathrm{PAF}}$ was particularly hindered in large sample size conditions ($\operatorname{MBE}[N=5,000]=3.75$), population structures with population error $(\mathrm{MBE}[\mathrm{MF}=$ close $]=3.17)$, and correlated general factors ($\mathrm{MBE}[\mathrm{COR} . \mathrm{GF}=0.30]=2.51$). Despite $\mathrm{PA}_{\mathrm{PAF}}$ not being influenced by the number of variables per group factor in terms of accuracy, the MBE indicated that it overextracted more factors the more variables defined a group factor. In the end, $\mathrm{PA}_{\text {PAF }}$ only showed an acceptable overall performance for population structures without error and across conditions with the minimum sample size. Globally, EKC was less biased than K 1 and $\mathrm{PA}_{\mathrm{PAF}}$, but it overextracted factors with the maximum number of variables per group factor (MBE[VAR.GRF $=10$] = 1.46) and when population error was present ($\mathrm{MBE}[\mathrm{MF}=$ close] $=1.23$).

Because the estimation biases may cancel out when computing marginal means, we further assessed the precision of the factor retention methods with the MAE (Table A2 in the Appendix). However, the MAE followed a similar pattern to the MBE across all the manipulated levels and will not be further discussed.

As the overall performances of K1, EKC, and PA PAF were much worse than those of $\mathrm{PA}_{\mathrm{PCA}}$ and $E G A_{L V}$ in the presence of population error, in Table 4, we only show the Ω^{2} effect sizes obtained for
$\mathrm{PA}_{\text {PCA }}$ and $E G A_{L V}$ from the analysis of variance. ${ }^{3} \mathrm{PA}_{\text {PCA }}$ was most sensitive to VAR.GRF, a variable also involved in all the large two-way and three-way interactions. These interactions showed that the effect of other variables (LOAD.GF, LOAD.GRF, N, and N.GF) was smaller as the number of variables per group factor increased. Lower loadings on the group factors were very detrimental when the group factors were defined by fewer variables, especially in smaller samples (Figure 3(a); Ω^{2} [VAR.GRF $\times N \times$ LOAD.GRF] $=0.22$). Similarly, having more general factors was increasingly deleterious when fewer variables loaded on the group factors, particularly when the sample size was smaller (Figure 3(b); $\Omega^{2}[$ VAR.GRF $\times N \times$ N.GF] $=$ 0.18). Noteworthy, for samples of size 1,000 or larger and at least six indicators per group factor, the negative effect of having lower loadings on the group factors and more general factors was small. Another three-way interaction indicated that PA $_{\text {PCA }}$ tended to underperform more with lower loadings on the group factors when fewer variables defined them and when there were more general factors (Figure 4; $\Omega^{2}[$ VAR.GRF \times N.GF \times LOAD.GRF] $=0.16$). In other words, with an increasing number of general factors, more indicators per group factor might be needed if their quality is low. Finally, an interaction indicated that higher loadings on the general factors were more detrimental when the group factors were defined by only a few items (Figure 5; $\Omega^{2}[$ VAR.GRF \times LOAD.GF] $=0.19$). That is, better-defined group factors counterbalanced the effect induced by the presence of stronger general factors (e.g., higher correlations among the variables that loaded on the same general factor but different group factors).

Concerning $\mathrm{EGA}_{\mathrm{LV}}$, the results of the ANOVA revealed that it was sensitive to the number of variables per group factor, the number of general factors, and the presence of cross-loadings among the group factors. All the effects produced by these variables were smaller on $\mathrm{EGA}_{\mathrm{LV}}$ than on $\mathrm{PA}_{\mathrm{PCA}}$, except those involving cross-loadings. When there were no cross-loadings, $E^{2} A_{L V}$ remained robust to weakly defined group factors (i.e., few variables per group factor with low loadings), and larger factor structures. Small cross-loadings started to become detrimental only in structures with three general factors or low loadings on the group factors if the number of variables per group factor was eight or smaller. However, the effect of high cross-loadings was very detrimental when the group factors had fewer variables in structures with more than one general factor (Figure 6(a); Ω^{2} [VAR.GRF \times CROSS.GRF \times N.GF $]=0.22$) or with lower loadings on the group factors (Figure 6(b); Ω^{2} [VAR.GRF \times CROSS.GRF \times N.GF] $=0.13$). Such detrimental effect of crossloadings, in interaction with the aforementioned variables, was small whenever eight or more variables defined each group factor.

Recovery of the Number of General Factors

Despite the good performance of the lowest-level cluster of $\mathrm{EGA}_{\mathrm{LV}}$ in identifying the number of group factors, it only identified a higher layer of clusters in 42% of the simulated data sets.

[^2]Table 3
MBE Across Each Variable Level for Each Factor Retention Method

Variable	Group factors							General factors			
	Kaiser		PA ${ }_{\text {PAF }}$		$\mathrm{PA}_{\text {PCA }}$		EGA ${ }_{\text {LV }}$	PA ${ }_{\text {PCA-FS }}$		EGA ${ }_{\text {LV }}$	$\mathrm{EGA}_{\text {LV-FS }}$
	K1	EKC	M	95th	M	95th		M	95th		
MF											
Zero	1.56	0.02	0.01	-0.01	-0.48	-0.57	-0.30	-0.01	-0.02	0.64	0.00
Close	2.58	1.23	3.83	3.17	-0.40	-0.49	-0.29	-0.01	-0.02	0.70	0.00
N											
500	4.84	0.62	0.40	0.16	- 1.13	- 1.37	-0.26	-0.03	-0.07	1.48	0.00
1,000	2.25	0.88	1.00	0.68	-0.44	-0.54	-0.31	0.00	-0.01	0.86	0.00
2,000	0.85	0.67	2.12	1.72	-0.16	-0.20	-0.31	0.00	0.00	0.39	0.00
5,000	0.33	0.33	4.17	3.76	-0.01	-0.02	-0.30	0.00	0.00	-0.05	-0.01
N.GF											
1	0.41	0.31	2.43	1.99	-0.07	-0.10	0.02	0.00	0.00	-0.88	0.00
2	1.51	0.56	1.73	1.41	-0.31	-0.39	-0.14	0.00	-0.01	0.12	0.00
3	3.46	0.84	1.86	1.54	-0.75	-0.89	-0.61	-0.02	-0.04	2.00	-0.01
COR.GF											
0	1.61	0.34	1.23	0.96	-0.40	-0.48	-0.26	-0.01	-0.02	0.40	0.00
0.30	2.76	1.05	2.96	2.51	-0.49	-0.61	-0.35	-0.01	-0.02	1.08	0.00
VAR.GRF											
4	0.09	-0.10	0.88	0.59	- 1.46	- 1.73	-0.76	-0.04	-0.08	1.41	-0.01
6	0.99	0.31	1.65	1.32	-0.29	-0.36	-0.28	0.00	0.00	1.20	0.00
8	2.55	0.83	2.31	1.94	-0.04	-0.07	-0.10	0.00	0.00	0.40	0.00
10	4.64	1.46	2.85	2.47	0.05	0.03	-0.04	0.00	0.00	-0.33	0.00
N.GRF											
4	1.23	0.44	1.60	1.28	-0.24	-0.31	-0.17	-0.01	-0.02	-0.26	-0.01
5	2.02	0.63	1.92	1.58	-0.42	-0.51	-0.29	-0.01	-0.02	0.61	0.00
6	2.96	0.81	2.25	1.88	-0.65	-0.77	-0.42	-0.01	-0.02	1.67	0.00
CROSS.GRF											
0	2.06	0.66	2.00	1.66	-0.33	-0.42	0.00	-0.01	-0.02	0.20	0.00
0.15	2.06	0.64	1.95	1.62	-0.43	-0.53	-0.14	-0.01	-0.03	0.62	0.00
0.30	2.09	0.58	1.81	1.47	-0.55	-0.65	-0.75	0.00	-0.01	1.19	-0.01
LOAD.GRF $20.0{ }^{\text {c }}$											
Low	2.95	0.71	1.90	1.52	-0.82	-0.98	-0.48	-0.02	-0.04	1.32	-0.01
Medium	1.19	0.54	1.94	1.64	-0.05	-0.08	-0.11	0.00	0.00	0.03	0.00
LOAD.GF											
Low	2.97	0.71	1.68	1.34	-0.24	-0.31	-0.28	0.00	0.00	0.80	0.00
Medium	1.17	0.54	2.16	1.82	-0.63	-0.75	-0.31	-0.02	-0.04	0.55	-0.01
Total	2.07	0.63	1.92	1.58	-0.44	-0.53	-0.29	-0.01	-0.02	0.67	0.00

Note. $\mathrm{K} 1=$ Kaiser eigenvalue greater-than-one criterion; $\mathrm{EKC}=$ empirical Kaiser criterion; $\mathrm{PA}_{\mathrm{PAF}}=$ parallel analysis with principal axis factoring; $\mathrm{PA}_{\mathrm{PCA}}=$ parallel analysis with principal components; $\mathrm{PA}_{\mathrm{PCA}-\mathrm{FS}}=$ parallel analysis with principal components on the first-order factor scores; $\mathrm{EGA}=$ exploratory graph analysis; $\mathrm{EGA}_{\mathrm{LV}}=\mathrm{EGA}$ with Louvain; $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}=\mathrm{EGA}$ with Louvain on the first-order factor scores; $\mathrm{MF}=$ population misfit; $N=$ sample size; $\mathrm{N} . \mathrm{GF}=$ number of general factors; COR.GF $=$ correlation between general factors; VAR.GRF $=$ number of indicators per group factor; $\mathrm{N} . \mathrm{GRF}=$ number of group factors per general factor; CROSS.GRF $=$ cross-loadings in the group factors; LOAD.GRF $=$ loadings on the group factors; $\mathrm{LOAD} . \mathrm{GF}=$ loadings on the general factors; $\mathrm{MBE}=$ mean bias error.

Even in these cases, it often provided a wrong estimation of the number of general factors, with an overall HR of 0.24 . Therefore, we did not seek to analyze this method in further analyses. Similarly, K1, EKC, and PA PAF were inaccurate for detecting the number of group factors in situations of model misfit, so they were not further considered, as explained before. In contrast, the estimation of the number of general factors was extraordinarily accurate using either PAPCA-FS or $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$. These methods presented HRs close to one and mean absolute errors close to zero across all the variable levels (Tables 2 and 4). The minimum marginal HRs and maximum marginal mean absolute errors for PA $\mathrm{PCA}_{\text {PFS }}$ happened in the conditions with few variables per group factor $(\mathrm{HR}=0.97, \mathrm{MAE}=0.04$, $\mathrm{VAR} \cdot \mathrm{GRF}=4)$ and small sample size ($\mathrm{HR}=0.97$, MAE $=0.03, N=500$). On the other hand, $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$ had an almost perfect performance across all the variable levels. Interestingly, none of the estimated Ω^{2} effect
sizes for either method were high (Table 4). For PA PCA-FS, the maximum Ω^{2} value associated with a main effect was 0.03 , and for $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}, 0.01$.

The HEXACO-100 Inventory

The HEXACO-100 Inventory (Lee \& Ashton, 2018) is an instrument that was designed to display a robust hierarchical structure of personality traits. It aims to measure 25 personality traits (i.e., group factors) and six domains (i.e., general factors) using 100 items, four items by trait. The domains (G) and traits (S) are listed as follows: Emotionality (G1), Fearfulness (S1), Anxiety (S2), Dependence (S3), Sentimentality (S4); Extraversion (G2), Social Self-Esteem (S5), Social Boldness (S6), Sociability (S7), Liveliness (S8); Conscientiousness (G3), Organization (S9), Diligence (S10), Perfectionism (S11), Prudence (S12); Openness to Experience (G4),

Table 4
Partial Omega Squared Coefficients $\left(\Omega^{2}\right)$ From the ANOVAs on the Absolute Error for All the Nine Main Effects, and for the Remaining Coefficients Whose $\Omega^{2} \geq 0.14$ or Close in At Least One Factor Retention Method

Coefficients	Group factors		General factors	
	PA ${ }_{\text {PCA }}$	$\mathrm{EGA}_{\text {LV }}$	PA ${ }_{\text {PCA-FS }}$	$\mathrm{EGA}_{\text {LV-FS }}$
Main effects				
VAR.GRF	0.57	0.22	0.03	0.01
N	0.39	0.00	0.02	0.00
N.GF	0.29	0.18	0.01	0.00
LOAD.GF	0.15	0.00	0.01	0.00
LOAD.GRF	0.35	0.12	0.01	0.00
N.GRF	0.13	0.04	0.00	0.00
MF	0.00	0.00	0.00	0.00
COR.GF	0.00	0.00	0.00	0.00
CROSS.GRF	0.03	0.28	0.00	0.01
Two-way interactions				
VAR.GRF \times LOAD.GRF	0.45	0.09	0.03	0.01
VAR.GRF $\times N$	0.44	0.01	0.06	0.00
VAR.GRF \times N.GF	0.28	0.14	0.02	0.01
$N \times$ LOAD.GRF	0.26	0.00	0.02	0.00
$N \times \mathrm{N} . \mathrm{GF}$	0.20	0.00	0.01	0.00
VAR.GRF \times LOAD.GF	0.19	0.00	0.02	0.00
N.GF \times LOAD.GRF	0.16	0.08	0.01	0.00
VAR.GRF \times CROSS.GRF	0.05	0.33	0.00	0.02
N.GF \times CROSS.GRF	0.01	0.20	0.00	0.01
Three-way interactions				
VAR.GRF $\times N \times$ LOAD.GRF	0.21	0.00	0.06	0.00
VAR.GRF $\times N \times \mathrm{N} . \mathrm{GF}$	0.18	0.01	0.04	0.00
VAR.GRF \times N. $\mathrm{GF} \times$ LOAD.GRF	0.17	0.05	0.02	0.01
VAR.GRF \times N.GF \times CROSS.GRF	0.01	0.22	0.00	0.02
VAR.GRF \times LOAD.GRF \times CROSS.GRF	0.01	0.13	0.00	0.01

Note. All the p-values of the effect sizes shown in bold are lower than $1 \mathrm{e}-16 . \mathrm{PA}_{\mathrm{PCA}}=$ parallel analysis with principal components; $\mathrm{PA}_{\text {PCA-FS }}=$ parallel analysis with principal components on the first-order factor scores; $\mathrm{EGA}=$ exploratory graph analysis; $\mathrm{EGA}_{\mathrm{LV}}=\mathrm{EGA}$ with Louvain; $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}=\mathrm{EGA}$ with Louvain on the first-order factor scores. $\mathrm{MF}=$ population misfit; N.GF $=$ number of general factors; COR.GF $=$ correlation between general factors; $N=$ sample size; VAR.GRF = number of indicators per group factor; N.GRF = number of group factors per general factor; CROSS.GRF = cross-loadings in the group factors; LOAD.GF = loadings on the general factors; LOAD.GRF = loadings on the group factors; ANOVAs $=$ analysis of variance.

Aesthetic Appreciation (S13), Inquisitiveness (S14), Creativity (S15), Unconventionality (S16); Agreeableness (G5), Forgiveness (S17), Gentleness (S18), Flexibility (S19), Patience (S20); Honesty-Humility (G6), Sincerity (S21); Fairness (S22), Greed-Avoidance (S23), Modesty (S24). The 25th factor is interstitial and corresponds to Altruism. This factor is not embedded in the hierarchical organization of the HEXACO personality theory, so it was not considered in the forthcoming analyses.

To investigate this hypothetical structure of 24 group factors and six general factors, we used a sample of 647 undergraduate students enrolled in an Australian university (Anglim et al., 2022; Wood et al., 2022). Dimensionality and statistical analyses in this sample were done in R (R Core Team, 2022) under the 4.2.2 Version. The hierarchical exploratory graph analysis (i.e., $E G A_{L V}$ and $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$) was performed with the hierEGA function from the EGAnet package (Golino \& Christensen, 2022), Version 1.2.4, whereas the hierarchical parallel analysis (i.e., PA PCA and $\left.\mathrm{PA}_{\text {PCA-FS }}\right)$ was done with the parallel function from the bifactor package (Jiménez, Abad, Garcia-Garzon, Garcia-Garzon, et al., 2022), Version 0.1.0.

The data and script to run the analysis are available in the online repository https://osf.io/u7qwj/. The specific commands for executing the hierarchical methods are as follows:

```
# Load the Student data from the OSF repository:
student <- as.matrix(read.csv("article/analysis/student.csv"))
library(EGAnet) # Load the library to perform hierarchical EGA
hierega <- hierEGA(student, scores = "factor")
library(bifactor) # Load the library to perform hierarchical PA
hierPA <- parallel(student, hierarchical = TRUE, PA = "PCA", mean = TRUE)
```

The hierarchical exploratory graph analysis yielded 24 group factors and five general factors, whereas the hierarchical PA resulted in 13 group factors and five general factors using both the mean and the 95th percentile. Such a large discrepancy between $\mathrm{EGA}_{\mathrm{LV}}$ and $\mathrm{PA}_{\mathrm{PCA}}$ in the number of group factors may be due to a number of reasons that were not considered in the current simulation: first, in our simulation design, we considered structures up to three general factors whereas in this empirical example there could be even six according to theory. Second, while the simulated data were

Figure 3
MAE for the Number of Group Factors for the $P A_{P C A}$ Method, as Function of the Number of Variables per Group Factor, Sample Size (N), and the LOAD.GRF (Panel a) or the N.GF (Panel b)

Note. $\quad \mathrm{MAE}=$ mean absolute error; $\mathrm{PA}_{\mathrm{PCA}}=$ parallel analysis with principal component analysis; LOAD.GRF = loadings on the group factors; $\mathrm{N} . \mathrm{GF}=$ number of general factors.
continuous and normally distributed, the HEXACO-100 data are ordinal in nature, which may bear a greater impact on $\mathrm{PA}_{\text {PCA }}$ than $\mathrm{EGA}_{\mathrm{LV}}$. Third, considering the size of the factor structure, the sample size, and the number of indicators per group factor were low. These conditions were the ones that most impacted the performance of $\mathrm{PA}_{\mathrm{PCA}}$ in the simulation, producing underfactoring. As shown in the panel b of Figure 3, the combination of four indicators per group factor and a sample size of 500 , which are the characteristics that resemble most of the HEXACO-100 data, already produced a mean absolute error around five in structures with three general factors. Thus, looking at this pattern, it would not be surprising that $\mathrm{PA}_{\mathrm{PCA}}$ errors by more than 10 group factors in structures with five or six general factors. A last reason that may impact the performance of $\mathrm{PA}_{\mathrm{PCA}}$ is the presence of causal relations between the group factors (Franco et al., 2022).

Figure 4
MAE for the Number of Group Factors for the $P A_{P C A}$ Method, as Function of the Number of Variables per Group Factor, the N.GF, and the LOAD.GRF

Note. $\mathrm{MAE}=$ mean absolute error; $\mathrm{PA}_{\mathrm{PCA}}=$ parallel analysis with principal components; LOAD.GRF = loadings on the group factors; $\mathrm{N} \cdot \mathrm{GF}=$ number of general factors.

Figure 5
MAE for the Number of Group Factors for the $P A_{P C A}$ Method, as Function of the Number of Variables per Group Factor and the LOAD.GF

Note. $\mathrm{MAE}=$ mean absolute error; $\mathrm{PA}_{\mathrm{PCA}}=$ parallel analysis with principal components; LOAD.GRF $=$ loadings on the group factors.

For these reasons, and because the group-factor dimensionality obtained from EGA EV matched the HEXACO-100 theory, we fitted a bifactor model with 24 group factors and five general factors using the GSLiD algorithm (Jiménez et al., 2023). GSLiD is a recent method for conducting exploratory bifactor analysis with multiple general factors that consists of iteratively refining a partially specified target until no further refinement is required. Moreover, GSLiD can penalize the correlations between the group factors and estimate a model with only correlated general factors, so that the item variance explained by the general and group factors can be properly disentangled, providing more interpretable results than completely oblique and orthogonal solutions.

Figure 6
MAE for the Number of Group Factors for the $E G A_{L V}$ method, as Function of the Number of Variables per Group Factor, CROSS.GRF, and the N.GF (Panel a) or the LOAD.GRF (Panel b)

Note. $\mathrm{MAE}=$ mean absolute error; $\mathrm{EGA}_{\mathrm{LV}}=$ exploratory graph analysis with Louvain clustering; CROSS.GRF $=$ cross-loadings on the group factors; N.GF = number of general factors; LOAD.GRF = loadings on the group factors.

Tables A4 and A5 from the Appendix display the estimated loading matrix and factor correlations between the general factors, respectively. We considered item loadings higher than 0.25 and factor correlations higher than 0.20 to be substantive. As expected by the HEXACO-100 theory, the items corresponding to Emotionality, Extraversion, Conscientiousness, and Openness to Experience loaded on distinctive general factors (except item 35 for Conscientiousness and item 62 for Openness to Experience), whereas the items pertaining to Agreeableness and Honesty-Humility loaded on a single general factor. On the other hand, 81 items (84%) loaded on their expected group factors. The indicators that did not conform to the theoretical pattern are listed next: item 2 (Fearfulness), items 17, 18, 19, and 20 (Social Self-Esteem), item 29 (Liveliness), items 38 and 40 (Diligence), items 46, 47, and 48 (Prudence), items 61, 62, and 64 (Unconventionality), and item 69 (Gentleness). Finally, the absolute values of the correlations between the general factors were low-to-moderate, ranging from 0.25 to 0.34 .

In conclusion, the underlying structure of the HEXACO-100 (excluding the Altruism facet) is compatible with a theoretical model of 24 group factors and five general factors (Figure 7), with low-to-moderate loadings and factor correlations. Notwithstanding, we would like to remark that this empirical example was developed for illustrative purposes and that a more exhaustive analysis of the HEXACO-100 data is required to ascertain its underlying structure. For instance, a complete workflow would include checking for item redundancies (Christensen et al., 2020b), assessing the stability of the hierarchical solution by means of techniques such as bootstrapping (Christensen \& Golino, 2021), and interpreting the clusters. This is a complex work that is worth an independent study.

Discussion

Dimensionality assessment is one of the most important decisions that researchers face in test development and validation. It is well known that wrong dimensionality assessments can severely bias item parameter estimates and undermine the validity of test scores (Fava \& Velicer, 1992, 1996). Moreover, bifactor analysis applications would be better justified when empirical evidence supports the dimensionality of the data at lower and higher levels of

Figure 7
Factor Loadings for the HEXACO-100 Data (Excluding the Altruism Scale) From an Exploratory Bifactor Analysis With Five General Factors and 24 Group Factors Estimated With GSLiD

Note. For Simplicity, the absolute value of the factor loadings is shown. See the online article for the color version of this figure.
organization, revealing information that can be used for the posterior model specification and statistical analysis.

Unfortunately, theory is not always enough to ascertain the number of factors underlying a data set, and factor retention methods become necessary. Today, there is little information on how to assess the dimensionality of structures with factors subsumed into broader, higher-order factors, like those encountered in intelligence, personality, and psychopathology. While many bifactor methods with either one or multiple general factors have been developed recently to estimate large and complex structures that account for the presence of general factors (Abad et al., 2017; Cai, 2010; Garcia-Garzon et al., 2019, 2020; Jennrich \& Bentler, 2011; Jiménez et al., 2023; Nájera et al., 2021), we still lack evidence-based recommendations on how to assess the dimensionality of this kind of structures. This is a crucial limitation because all of these methods assume that the number of group and general factors are known.

Hence, in this study, we investigated for the first time the performance of some classical and recent factor retention methods to uncover the number of group and general factors in bifactor structures up to three general factors. Overall, we found that $E^{-1} A_{L V}$ was the most accurate, precise, and robust method for estimating the number of group factors, followed by $\mathrm{PA}_{\mathrm{PCA}}$, which was sensitive to various conditions, namely the number of variables per group factor, sample size, and loadings on the group and general factors.

These results align with previous research showing that $\mathrm{PA}_{\mathrm{PCA}}$ underestimates the number of factors in conditions involving small samples and large factor structures with weakly defined group factors (Braeken \& Van Assen, 2017; Garrido et al., 2013; Yang \& Xia, 2015). Notwithstanding, the performance of $\mathrm{PA}_{\text {PCA }}$ was very high whenever the sample size was above 1,000 , and the number of variables per group factor was six or higher. Our findings also agree with previous results in which EGA was highly robust to unfavorable conditions, albeit using the Walktrap clustering algorithm instead of Louvain (Cosemans et al., 2021; Golino \& Epskamp, 2017; Golino, Shi, et al., 2020). The other tested factor retention methods, K1, EKC, and $\mathrm{PA}_{\mathrm{PAF}}$, did not perform well in estimating the number of group factors when the population structures contained misfit and were not further examined.

Interestingly, sample size and model misfit had little influence on $\mathrm{EGA}_{\mathrm{LV}}$. A possible explanation for the latter finding is that the GLASSO penalization shrinks toward zero small partial correlations that appear due to trivial common variance attributable to population error. However, the performance of $\mathrm{EGA}_{\mathrm{LV}}$ was not perfect. It was sensitive to high cross-loadings, particularly in factor structures with more than one general factor and weakly defined group factors. This sensitivity of $\mathrm{EGA}_{\mathrm{LV}}$ to high cross-loadings could be due to the fact that the Louvain algorithm does not allow overlapping clusters (Blanken et al., 2018; Christensen et al., 2020a). In other words, items cannot be simultaneously classified in more than one cluster, which increases the probability of incorrect placements if high crossloadings exist.

Within the PA methods, many researchers have suggested that $\mathrm{PA}_{\mathrm{PAF}}$ is more suitable than $\mathrm{PA}_{\mathrm{PCA}}$ for correlated psychological data, both theoretically and empirically (Crawford et al., 2010; Green et al., 2012; Keith et al., 2016). Particularly, Crawford et al. (2010) found that $\mathrm{PA}_{\text {PAF }}$ performed better than $\mathrm{PA}_{\text {PCA }}$ under multiple correlated factors, second-order general factors, and bifactor models. However, they did not consider the role of population error in their simulations. As revealed in our results and in other
studies such as Lim and Jahng (2019) and Xia (2021), the accuracy of $\mathrm{PA}_{\text {PAF }}$ greatly diminishes in the presence of trivial population misfit and only outperforms other methods if, and only if, no population error exists. Unfortunately, some sort of population misfit is always expected to exist in applied settings. Moreover, $\mathrm{PA}_{\text {PAF }}$ tended to overextract factors with higher sample sizes and an increasing number of variables per group factor. Therefore, we consider that $\mathrm{PA}_{\mathrm{PAF}}$ is inappropriate for evaluating the dimensionality of bifactor structures with one or multiple general factors. Contrary, $\mathrm{PA}_{\mathrm{PCA}}$ was only moderately affected by the presence of close misfit, a result that is also consistent with previous research (Lim \& Jahng, 2019; Xia, 2021). On the other hand, using either the mean value or the 95th percentile as the cutoff for computing the reference eigenvalues did not result in a practical difference for $\mathrm{PA}_{\text {PCA }}$.

Overall, although EKC was better than K1, it showed a worse performance than $E G A_{L V}$ and $P_{P C A}$ to most of the experimental conditions (Table A3 in the Appendix). This result was explained by its high sensibility to population error and a tendency to overextract factors the more variables defined the group factors. This pattern was also observed for K1, resulting in even lower HRs and biased estimates. Thus, these results agree with several decades of simulation research in that K1 should never be used for dimensionality assessment, especially in large factor structures like the ones often encountered in bifactor applications.

Regarding the estimation of the general factors, we found that when $E G A_{L V}$ estimated more than one layer of clusters, the number of factors suggested by the highest-level cluster was mostly inaccurate. On the contrary, $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$ and $\mathrm{PA}_{\text {PCA-FS }}$ had an almost perfect accuracy across all the conditions, especially the former. More concretely, $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$ produced an equal or higher performance than PA $\mathrm{PCA}_{\text {PFS }}$ and was highly robust to all the experimental conditions.

Globally, these results suggest that the number of general factors could be estimated accurately even when $E G A_{L V}$ and $P_{P C A}$ failed to determine the correct number of group factors. Notwithstanding, despite these encouraging results, a note of caution should be raised: we do not recommend applying these hierarchical methods blindly. These methods should only be considered when the correlations between the factor scores are not trivially small. In other words, we recommend inspecting the first-order factor correlation matrix before interpreting the estimates provided by $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$ and $\mathrm{PA}_{\text {PCA-FS }}$. Otherwise, we would be at risk of inferring the presence of general factors, when there is no more variance to explain beyond the one, accounted for the first-order factors.

To illustrate how the proposed hierarchical dimensionality analyses can be done in R software, we analyzed a real data set concerning the personality traits of the HEXACO-100 Inventory, which is intended to measure 24 hypothetical facets (measured by four items each) embedded within six general domains. Whereas PA PCA yielded a too conservative estimation of the number of group factors (13), $\mathrm{EGA}_{\mathrm{LV}}$ estimated 24 , as expected by the theory. The defective performance of $\mathrm{PA}_{\mathrm{PCA}}$ can be explained by the low sample size ($N=647$) and few indicators per group factor of the HEXACO-100, conditions in which $\mathrm{PA}_{\mathrm{PCA}}$ was more prone to underfactor in the simulation. Contrary, both PAPCA-Fs and $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$ suggested five general factors. To investigate the factor structure of the HEXACO-100, we conducted an exploratory bifactor analysis with 24 group factors and five general factors using the GSLiD algorithm (Jiménez et al., 2023). As a result, the estimated loadings resembled most of the HEXACO-100 theory.

Interestingly, the items pertaining to the Agreeableness and Honesty-Humility scales merged in a single general domain, whereas most of the group factors were recovered (e.g., 21 of the 24 group factors were defined by at least two of their theoretical indicators).

An advantage of our hierarchical proposals over Goldberg's Bass-Ackwards method is that they are based on a bottom-up approach. We first focus on estimating the number of lower-order factors and then proceed with the higher-order ones. This way, we are able to identify the nuances that make up the more general traits, encouraging the analysis of item content and domain's breadth (Condon et al., 2020; Mõttus et al., 2020). We also remark that $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$ is somewhat similar to the second-order method proposed by Golino, Thiyagarajan, et al. (2020). The main differences between our and their approach are that we used the lowest-level cluster provided by the Louvain algorithm instead of Walktrap and analyzed the correlation matrix between the factor scores instead of the correlation matrix between the rotated factors, which does not require computing the factor scores. Future simulation studies may consider including the method of Golino, Thiyagarajan, et al. (2020) to check whether it performs as well as $E G A_{L V-F S}$.

This simulation study tried to emulate real data with conditions involving population misfit and cross-loadings, but it has some limitations: first, we only generated continuous data from multivariate normal distributions. With categorical data, polychoric correlation matrices, and skewed distributions, the performance of all the methods should deteriorate, and the extent to which this would happen is unknown. If this is the case, it would also be interesting to compare alternative factor or network scoring methods to establish which are optimal for the recovery of the number of general factors. Second, we only generated factor structures up to three general factors, whereas some cases of psychological data may contain more. This limitation was due to the fact that controlling population misfit in conditions involving more than three general factors is a difficult task, as larger factor structures produce correlation matrices closer to nonpositiveness. Forthcoming work will be needed to solve these technical issues inherent to bifactor structures with multiple general factors. Notwithstanding, the current simulation is the first one that systematically investigates the dimensionality assessment of factor structures with a varying number of general factors, and it is a good first step toward developing tools for factor retention in fields like intelligence, personality, and psychopathology, where the statistical models usually display a hierarchical configuration.

Although the specific factor structures simulated in this study are bifactor, it is important to note that second-order structures can be interpreted as bifactor structures with proportionality constraints between the general and group factors (Jiménez et al., 2023). In other words, second and higher-order structures are constrained versions of bifactor structures and, as such, our simulation setup provides results that are generalizable to a larger range of hierarchical structures. Hence, we think that the hierarchical factor retention methods developed here will help to disentangle the different levels of organization of complex data in the broad field of individual differences regardless of the specific factor model (i.e., bifactor or higher-order). These factor analytic models require a decision regarding the number of factors to extract, we also believe that these hierarchical methods can help to justify or guide model specification in applied research.

In conclusion, we aimed to provide applied researchers with accurate methods that can help them to uncover hierarchical structures in their data, and our results suggest that PA with principal component analysis and exploratory graph analysis with the Louvain algorithm, when applied to items and then to the first-order factor scores, offer a good recovery of the dimensionality of the hierarchical structure. As different variables impact these two methods, researchers may use them in tandem or according to the known or plausible characteristics of their data. Noteworthy, $\mathrm{EGA}_{\mathrm{LV}}$ not only was the best method in terms of accuracy, precision, and robustness for the conditions most likely to be encountered in practice, but also provides a classification of items into factors, offering a richer dimensionality assessment that can be easily compared with the theoretical expectations of the factor structure. Furthermore, the stability of the $\mathrm{EGA}_{\mathrm{LV}}$ and $E G A_{\mathrm{LV}-\mathrm{FS}}$ latent solutions can be readily ascertained using bootstrap procedures currently available (Christensen \& Golino, 2021). Thus, we highlight the particular usefulness of $\mathrm{EGA}_{\mathrm{LV}}$ and $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}$ for assessing bifactor structures with one or multiple general factors. Finally, much more attention should be considered to the number of group factors, as the second-order methods depend on this quantity, and they are harder to estimate than the number of general factors.

References

Abad, F. J., Garcia-Garzon, E., Garrido, L. E., \& Barrada, J. R. (2017). Iteration of partially specified target matrices: Application to the bi-factor case. Multivariate Behavioral Research, 52(4), 416-429. https://doi.org/ 10.1080/00273171.2017.1301244

Abad, F. J., Sorrel, M. A., Garcia, L. F., \& Aluja, A. (2018). Modeling general, specific, and method variance in personality measures: Results for ZKA-PQ and NEO-PI-R. Assessment, 25(8), 959-977. https://doi.org/10 .1177/1073191116667547
Anglim, J., Dunlop, P. D., Wee, S., Horwood, S., Wood, J. K., \& Marty, A. (2022). Personality and intelligence: A meta-analysis. Psychological Bulletin, 148(5-6), 301-336. https://doi.org/10.1037/bul0000373
Auerswald, M., \& Moshagen, M. (2019). How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psychological Methods, 24(4), 468491. https://doi.org/10.1037/met0000200

Beaujean, A. A. (2015). John Carroll's views on intelligence: Bi-factor vs. higher-order models. Journal of Intelligence, 3(4), 121-136. https:// doi.org/10.3390/jintelligence3040121
Blanken, T. F., Deserno, M. K., Dalege, J., Borsboom, D., Blanken, P., Kerkhof, G. A., \& Cramer, A. O. J. (2018). The role of stabilizing and communicating symptoms given overlapping communities in psychopathology networks. Scientific Reports, 8(1), Article 5854. https://doi.org/ 10.1038/s41598-018-24224-2

Blondel, V. D., Guillaume, J. -L., Lambiotte, R., \& Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), Article P10008. https:// doi.org/10.1088/1742-5468/2008/10/P10008
Bork, R. van, Rhemtulla, M., Waldorp, L. J., Kruis, J., Rezvanifar, S., \& Borsboom, D. (2021). Latent variable models and networks: Statistical equivalence and testability. Multivariate Behavioral Research, 56(2), 175-198. https://doi.org/10.1088/1742-5468/2008/10/P10008
Bornovalova, M. A., Choate, A. M., Fatimah, H., Petersen, K. J., \& Wiernik, B. M. (2020). Appropriate use of bifactor analysis in psychopathology research: Appreciating benefits and limitations. Biological Psychiatry, 88(1), 18-27. https://doi.org/10.1016/j.biopsych.2020.01.013
Braeken, J., \& Van Assen, M. A. L. M. (2017). An empirical Kaiser criterion. Psychological Methods, 22(3), 450-466. https://doi.org/10.1037/ met0000074

Buja, A., \& Eyuboglu, N. (1992). Remarks on parallel analysis. Multivariate Behavioral Research, 27(4), 509-540. https://doi.org/10.1207/s15327906 mbr2704_2
Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychometrika, 75(4), 581-612. https://doi.org/10.1007/ s11336-010-9178-0
Chen, J., \& Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759-771. https://doi.org/10.1093/biomet/asn034
Christensen, A. P., Garrido, L. E., \& Golino, H. (2020a). Comparing community detection algorithms in psychological data: A Monte Carlo simulation. PsyArXiv. https://doi.org/10.31234/osf.io/hz89e
Christensen, A. P., Garrido, L. E., \& Golino, H. (2020b). Unique variable analysis: A network psychometrics method to detect local dependence. PsyArXiv. https://doi.org/10.31234/osf.io/4kra2
Christensen, A. P., \& Golino, H. (2021). Estimating the stability of psychological dimensions via bootstrap exploratory graph analysis: A Monte Carlo simulation and tutorial. Psych, 3(3), 479-500. https://doi.org/10 .3390/psych3030032
Cliff, N. (1988). The eigenvalues-greater-than-one rule and the reliability of components. Psychological Bulletin, 103(2), 276-279. https://doi.org/10 .1037/0033-2909.103.2.276
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge Academic. https://www.routledge.com/Statistical-Power-Analysis-for-the-Behavioral-Sciences/Cohen/p/book/9780805802832
Condon, D. M., Wood, D., Mõttus, R., Booth, T., Costantini, G., Greiff, S., Johnson, W., Lukaszewski, A., Murray, A., Revelle, W., Wright, A. G. C., Ziegler, M., \& Zimmermann, J. (2020). Bottom up construction of a personality taxonomy. European Journal of Psychological Assessment, 36(6), 923-934. https://doi.org/10.1027/1015-5759/a000626
Cosemans, T., Rosseel, Y., \& Gelper, S. (2021). Exploratory graph analysis for factor retention: Simulation results for continuous and binary data. Educational and Psychological Measurement, 82(5), 880-910. https:// doi.org/10.1177/00131644211059089
Crawford, A. V., Green, S. B., Levy, R., Lo, W. -J., Scott, L., Svetina, D., \& Thompson, M. S. (2010). Evaluation of parallel analysis methods for determining the number of factors. Educational and Psychological Measurement, 70(6), 885-901. https://doi.org/10.1177/0013164410379332
Csardi, G., \& Nepusz, T. (2006). The igraph software package for complex network research. International Journal of Complex Systems, 1695(5), 1-9. https://igraph.org
Cudeck, R., \& Browne, M. W. (1992). Constructing a covariance matrix that yields a specified minimizer and a specified minimum discrepancy function value. Psychometrika, 57(3), 357-369. https://doi.org/10.1007/ BF02295424
Epskamp, S., \& Fried, E. (2017). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617-634. https://doi.org/10 .1037/met0000167
Epskamp, S., Waldorp, L. J., Mõttus, R., \& Borsboom, D. (2018). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453-480. https://doi.org/10 .1080/00273171.2018.1454823
Fabrigar, L., Wegener, D., MacCallum, R., \& Strahan, E. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299. https://doi.org/10.1037/1082989X.4.3.272
Fan, X., \& Sivo, S. A. (2007). Sensitivity of fit indices to model misspecification and model types. Multivariate Behavioral Research, 42(3), 509529. https://doi.org/10.1080/00273170701382864

Fava, J. L., \& Velicer, W. F. (1992). The effects of overextraction on factor and component analysis. Multivariate Behavioral Research, 27(3), 387415. https://doi.org/10.1207/s15327906mbr2703_5

Fava, J. L., \& Velicer, W. F. (1996). The effects of underextraction in factor and component analyses. Educational and Psychological Measurement, 56(6), 907-929. https://doi.org/10.1177/0013164496056006001
Franco, V. R., Barros, G. W., Wiberg, M., \& Laros, J. A. (2022). Chain graph reduction into power chain graphs. Quantitative and Computational Methods in Behavioral Sciences, 2(1), Article e8383. https://doi.org/10 .5964/qcmb. 8383
Friborg, O., Hjemdal, O., Martinussen, M., \& Rosenvinge, J. H. (2009). Empirical support for resilience as more than the counterpart and absence of vulnerability and symptoms of mental disorder. Journal of Individual Differences, 30(3), 138-151. https://doi.org/10.1027/1614-0001.30.3.138
Friedman, J., Hastie, T., \& Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441. https:// doi.org/10.1093/biostatistics/kxm045
Garcia-Garzon, E., Abad, F. J., \& Garrido, L. E. (2019). Improving bi-factor exploratory modeling. Methodology, 15(2), 45-55. https://doi.org/10 .1027/1614-2241/a000163
Garcia-Garzon, E., Abad, F. J., \& Garrido, L. E. (2021). On omega hierarchical estimation: A comparison of exploratory bi-factor analysis algorithms. Multivariate Behavioral Research, 56(1), 101-119. https://doi.org/10 .1080/00273171.2020.1736977
Garcia-Garzon, E., Nieto, M. D., Garrido, L. E., \& Abad, F. J. (2020). Bi-factor exploratory structural equation modeling done right: Using the SLiDapp application. Psicothema, 32(4), 607-614. https://doi.org/10 .7334/psicothema2020.179
Garrido, L. E., Abad, F. J., \& Ponsoda, V. (2013). A new look at Horn's parallel analysis with ordinal variables. Psychological Methods, 18(4), 454474. https://doi.org/10.1037/a0030005

Garrido, L. E., Abad, F. J., \& Ponsoda, V. (2016). Are fit indices really fit to estimate the number of factors with categorical variables? Some cautionary findings via Monte Carlo simulation. Psychological Methods, 21(1), 93111. https://doi.org/10.1037/met0000064

Glorfeld, L. W. (1995). An improvement on Horn's parallel analysis methodology for selecting the correct number of factors to retain. Educational and Psychological Measurement, 55(3), 377-393. https://doi.org/10.1177/ 0013164495055003002
Goldberg, L. R. (2006). Doing it all Bass-Ackwards: The development of hierarchical factor structures from the top down. Journal of Research in Personality, 40(4), 347-358. https://doi.org/10.1016/j.jrp.2006.01.001
Golino, H., \& Christensen, A. P. (2022). EGAnet: Exploratory Graph Analysis - A framework for estimating the number of dimensions in multivariate data using network psychometrics (R Package Version 1.1.1) [Computer software]. https://cran.r-project.org/web/packages/EGAnet/ index.html
Golino, H., \& Demetriou, A. (2017). Estimating the dimensionality of intelligence like data using exploratory graph analysis. Intelligence, 62, 54-70. https://doi.org/10.1016/j.intell.2017.02.007
Golino, H., \& Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE, 12(6), Article e0174035. https://doi.org/10.1371/ journal.pone. 0174035
Golino, H., Shi, D., Christensen, A., Garrido, L. E., Nieto, M. D., Sadana, R., Thiyagarajan, J. A., \& Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial. Psychological Methods, 25(3), 292-320. https://doi.org/10.1037/met0000255
Golino, H., Thiyagarajan, J. A., Sadana, R., Teles, M., Christensen, A. P., \& Boker, S. M. (2020, October 19). Investigating the broad domains of intrinsic capacity, functional ability and environment: An exploratory graph analysis approach for improving analytical methodologies for measuring healthy aging. https://doi.org/10.31234/osf.io/hj5mc
Goretzko, D., Pham, T. T. H., \& Bühner, M. (2021). Exploratory factor analysis: Current use, methodological developments and recommendations for
good practice. Current Psychology, 40(7), 3510-3521. https://doi.org/10 .1007/s12144-019-00300-2
Green, S. B., Levy, R., Thompson, M. S., Lu, M., \& Lo, W. -J. (2012). A proposed solution to the problem with using completely random data to assess the number of factors with parallel nnalysis. Educational and Psychological Measurement, 72(3), 357-374. https://doi.org/10.1177/ 0013164411422252
Green, S. B., Redell, N., Thompson, M. S., \& Levy, R. (2016). Accuracy of revised and traditional parallel analyses for assessing dimensionality with binary data. Educational and Psychological Measurement, 76(1), 5-21. https://doi.org/10.1177/0013164415581898
Green, S. B., Thompson, M. S., Levy, R., \& Lo, W. -J. (2015). Type I and type II error rates and overall accuracy of the revised parallel analysis method for determining the number of factors. Educational and Psychological Measurement, 75(3), 428-457. https://doi.org/10.1177/ 0013164414546566
Green, S. B., Xu, Y., \& Thompson, M. S. (2018). Relative accuracy of two modified parallel analysis methods that use the proper reference distribution. Educational and Psychological Measurement, 78(4), 589-604. https://doi.org/10.1177/0013164417718610
Grice, J. W. (2001). Computing and evaluating factor scores. Psychological Methods, 6(4), 430-450. https://doi.org/10.1037/1082-989x.6.4.430
Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19(2), 149-161. https://doi.org/10.1007/BF02289162
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179-185. https://doi.org/10.1007/ BF02289447
Humphreys, L. G., \& Ilgen, D. R. (1969). Note on a criterion for the number of common factors. Educational and Psychological Measurement, 29(3), 571-578. https://doi.org/10.1177/001316446902900303
Jennrich, R. I., \& Bentler, P. M. (2011). Exploratory bi-factor analysis. Psychometrika, 76(4), 537-549. https://doi.org/10.1007/s11336-011-9218-4
Jiménez, M., Abad, F. J., Garcia-Garzon, E., Garcia-Garzon, H., Christensen, A. P., \& Garrido, L. E. (2022). Dimensionality assessment in bi-factor structures with multiple general factors: A network psychometrics approach. PsyArXiv. https://doi.org/10.31234/osf.io/2ujdk
Jiménez, M., Abad, F. J., Garcia-Garzon, E., \& Garrido, L. E. (2023). Exploratory bi-factor analysis with multiple general factors, Multivariate Behavioral Research, 1-18. Advance online publication. https://doi.org/10.1080/00273171.2023.2189571
Jiménez, M., Abad, F. J., Garcia-Garzon, E., Garrido, L. E., \& Franco, V. R. (2022). Bifactor: Exploratory factor and bi-factor modeling with multiple general fators [Manual]. https://github.com/Marcosjnez/bifactor
Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141-151. https://doi.org/10.1177/001316446002000116
Keith, T. Z., Caemmerer, J. M., \& Reynolds, M. R. (2016). Comparison of methods for factor extraction for cognitive test-like data: Which overfactor, which underfactor? Intelligence, 54, 37-54. https://doi.org/10.1016/j .intell.2015.11.003
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., Brown, T. A., Carpenter, W. T., Caspi, A., Clark, L. A., Eaton, N. R., Forbes, M. K., Forbush, K. T., Goldberg, D., Hasin, D., Hyman, S. E., Ivanova, M. Y., Lynam, D. R., Markon, K., ... Zimmerman, M. (2017). The hierarchical taxonomy of psychopathology (HiTOP): A dimensional alternative to traditional nosologies. Journal of Abnormal Psychology, 126(4), 454-477. https://doi.org/10.1037/abn0000258
Lee, K., \& Ashton, M. C. (2018). Psychometric properties of the HEXACO-100. Assessment, 25(5), 543-556. https://doi.org/10.1177/ 1073191116659134
Levy, R., Xia, Y., \& Green, S. B. (2021). Incorporating uncertainty into parallel analysis for choosing the number of factors via Bayesian methods.

Educational and Psychological Measurement, 81(3), 466-490. https:// doi.org/10.1177/0013164420942806
Li, Y., Schoenfeld, A. H., Graesser, A. C., Benson, L. C., English, L. D., \& Duschl, R. A. (2020). Computational thinking is more about thinking than computing. Journal for STEM Education Research, 3(1), 1-18. https:// doi.org/10.1007/s41979-020-00030-2
Lim, S., \& Jahng, S. (2019). Determining the number of factors using parallel analysis and its recent variants. Psychological Methods, 24(4), 452-467. https://doi.org/10.1037/met0000230
MacCallum, R. C. (2003). Working with imperfect models. Multivariate Behavioral Research, 38(1), 113-139. https://doi.org/10.1207/ S15327906MBR3801_5
Mansolf, M., \& Reise, S. P. (2016). Exploratory bifactor analysis: The Schmid-Leiman orthogonalization and Jennrich-Bentler analytic rotations. Multivariate Behavioral Research, 51(5), 698-717. https://doi.org/ 10.1080/00273171.2016.1215898

Mařenko, V. A., \& Pastur, L. (1967). Distribution of eigenvalues for some sets of random matrices. Mathematics of the USSR-Sbornik, 1(4), 457483. https://doi.org/10.1070/SM1967v001n04ABEH001994

Milfont, T. L., \& Duckitt, J. (2004). The structure of environmental attitudes: A first- and second-order confirmatory factor analysis. Journal of Environmental Psychology, 24(3), 289-303. https://doi.org/10.1016/j .jenvp.2004.09.001
Molenaar, D. (2016). On the distortion of model fit in comparing the bifactor model and the higher-order factor model. Intelligence, 57, 60-63. https:// doi.org/10.1016/j.intell.2016.03.007
Mõttus, R., Wood, D., Condon, D. M., Back, M. D., Baumert, A., Costantini, G., Epskamp, S., Greiff, S., Johnson, W., Lukaszewski, A., Murray, A., Revelle, W., Wright, A. G. C., Yarkoni, T., Ziegler, M., \& Zimmermann, J. (2020). Descriptive, predictive and explanatory personality research: Different goals, different approaches, but a shared need to move beyond the big few traits. European Journal of Personality, 34(6), 1175-1201. https://doi.org/10.1002/per. 2311
Nájera, P., Abad, F. J., \& Sorrel, M. A. (2021). Determining the number of attributes in cognitive diagnosis modeling. Frontiers in Psychology, 12, Article 614470. https://doi.org/10.3389/fpsyg.2021.614470
Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3), Article 036104. https://doi.org/10.1103/PhysRevE.74.036104
Pons, P., \& Latapy, M. (2006). Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications, 10(2), 191-218. https://doi.org/10.7155/jgaa. 00124
R Core Team. (2022). R: A language and environment for statistical computing [R Foundation for Statistical Computing]. https://www.R-project.org/
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667-696. https://doi.org/10 .1080/00273171.2012.715555
Ringwald, W. R., Forbes, M. K., \& Wright, A. G. C. (2023). Meta-analysis of structural evidence for the Hierarchical Taxonomy of Psychopathology (HiTOP) model. Psychological Medicine, 53(2), 533-546. https:// doi.org/10.1017/S0033291721001902

Ruscio, J., \& Roche, B. (2011). Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure. Psychological Assessment, 24(2), 282-292. https://doi.org/10 .1037/a0025697
Saris, W. E., Satorra, A., \& Van Der Veld, W. M. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling: A Multidisciplinary Journal, 16(4), 561-582. https://doi.org/ 10.1080/10705510903203433

Shi, D., Maydeu-Olivares, A., \& DiStefano, C. (2018). The relationship between the standardized root mean square residual and model misspecification in factor analysis models. Multivariate Behavioral Research, 53(5), 676-694. https://doi.org/10.1080/00273171.2018.1476221
Tian, C., \& Liu, Y. (2021). A rotation criterion that encourages a hierarchical factor structure. In M. Wiberg, D. Molenaar, J. González, U. Böckenholt, \& J.-S. Kim (Eds.), Quantitative psychology (pp. 1-8). Springer. https:// doi.org/10.1007/978-3-030-74772-5_1
Timmerman, M. E., \& Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209-220. https://doi.org/10.1037/a0023353
Venables, W. N., \& Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer. https://www.stats.ox.ac.uk/pub/MASS4/
Wood, J. K., Anglim, J., \& Horwood, S. (2022). A less evaluative measure of big five personality: Comparison of structure and criterion validity. European Journal of Personality, 36(5), 809-824. https://doi.org/10 .1177/08902070211012920
Xia, Y. (2021). Determining the number of factors when population models can be closely approximated by parsimonious models. Educational and Psychological Measurement, 81(6), 1143-1171. https://doi.org/10.1177/ 0013164421992836
Xia, Y., \& Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior Research Methods, 51(1), 409-428. https://doi.org/10.3758/s13428-018-1055-2
Ximénez, C., Maydeu-Olivares, A., Shi, D., \& Revuelta, J. (2022). Assessing cutoff values of SEM fit indices: Advantages of the unbiased SRMR index and its cutoff criterion based on communality. Structural Equation Modeling: A Multidisciplinary Journal, 29(3), 368-380. https://doi.org/ 10.1080/10705511.2021.1992596

Yang, Y., \& Xia, Y. (2015). On the number of factors to retain in exploratory factor analysis for ordered categorical data. Behavior Research Methods, 47(3), 756-772. https://doi.org/10.3758/s13428-014-0499-2
Yeomans, K. A., \& Golder, P. A. (1982). The Guttman-Kaiser criterion as a predictor of the number of common factors. Journal of the Royal Statistical Society. Series D (The Statistician), 31(3), 221-229. https://doi.org/10 .2307/2987988
Yung, Y.-F., Thissen, D., \& McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64(2), 113-128. https://doi.org/10.1007/BF02294531
Zwick, W. R., \& Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99(3), 432-442. https://doi.org/10.1037/0033-2909.99.3.432

Appendix

Table A1
Marginal Fit Indices for Each Variable Level

Variable	SRMR	RMSEA	CFI	Absolute residuals
N.GF				
1	0.0209 (0.0263)	0.0266 (0.0298)	0.9933 (0.9902)	0.0711 (0.0998)
2	$\mathbf{0 . 0 2 0 9}$ (0.0266)	0.0217 (0.0288)	0.9869 (0.9801)	0.0803 (0.0997)
3	0.0209 (0.0263)	0.0214 (0.0274)	0.9808 (0.9702)	0.0789 (0.0999)
COR.GF				
0	0.0209 (0.0266)	0.0219 (0.0298)	0.9865 (0.9702)	0.0777 (0.0999)
0.30	$\mathbf{0 . 0 2 0 9}$ (0.0264)	0.0216 (0.0281)	0.9846 (0.9732)	0.0782 (0.0995)
VAR.GRF				
4	0.0209 (0.0266)	0.0224 (0.0298)	0.9851 (0.9702)	0.0739 (0.0988)
6	0.0209 (0.0264)	0.0218 (0.0288)	0.9857 (0.9716)	0.0774 (0.0999)
8	0.0209 (0.0261)	0.0215 (0.0273)	0.9860 (0.9730)	0.0793 (0.0993)
10	0.0209 (0.0259)	0.0214 (0.0270)	0.9862 (0.9727)	0.0809 (0.0998)
N.GRF				
4	0.0209 (0.0266)	0.0220 (0.0298)	0.9868 (0.9754)	0.0758 (0.0997)
5	$\mathbf{0 . 0 2 0 9}$ (0.0263)	0.0217 (0.0291)	0.9857 (0.9729)	0.0783 (0.0994)
6	0.0209 (0.0263)	0.0216 (0.0293)	0.9847 (0.9702)	0.0795 (0.0999)
CROSS.GRF				
0	0.0209 (0.0262)	0.0217 (0.0298)	0.9857 (0.9702)	0.0771 (0.0999)
0.15	$\mathbf{0 . 0 2 0 9}$ (0.0264)	0.0218 (0.0294)	0.9859 (0.9717)	0.0778 (0.0995)
0.30	0.0209 (0.0266)	0.0218 (0.0295)	0.9856 (0.9713)	0.0787 (0.0998)
LOAD.GRF				
Low	0.0187 (0.0224)	0.0194 (0.0248)	0.9874 (0.9770)	0.0707 (0.0988)
Medium	0.0231 (0.0266)	0.0241 (0.0298)	0.9841 (0.9702)	0.0851 (0.0999)
LOAD.GF				
Low	0.0186 (0.0220)	0.0194 (0.0252)	0.9840 (0.9702)	0.0704 (0.0992)
Medium	0.0231 (0.0266)	0.0241 (0.0298)	0.9875 (0.9780)	0.0854 (0.0999)
Total	0.0209 (0.0266)	0.0218 (0.0298)	0.9857 (0.9702)	0.0779 (0.0999)

Note. The mean value is displayed in bold, and the single worst fit value is displayed in parentheses. SRMR = standardized root mean squared residual; RMSEA $=$ root mean square error of approximation; $\mathrm{CFI}=$ comparative fit index; $\mathrm{N} . \mathrm{GF}=$ number of general factors; COR.GF $=$ correlation between general factors; VAR.GRF $=$ number of indicators per group factor; $\mathrm{N} . \mathrm{GRF}=$ number of group factors per general factor; $\mathrm{CROSS} . \mathrm{GRF}=\mathrm{cross}-\operatorname{loadings}$ in the group factors; LOAD.GRF $=$ loadings on the group factors; LOAD.GF $=$ loadings on the general factors.

Table A2
MAE Across Each Variable Level for Each Factor Retention Method

Variable	Group factors							General factors			
	Kaiser		PA ${ }_{\text {PAF }}$		PA ${ }_{\text {PCA }}$		$\mathrm{EGA}_{\text {LV }}$	PA ${ }_{\text {PCA-FS }}$		$\mathrm{EGA}_{\text {LV }}$	$\mathrm{EGA}_{\text {LV-FS }}$
	K1	EKC	M	95th	M	95th		M	95th		
MF											
Zero	1.57	0.09	0.02	0.02	0.48	0.57	0.31	0.01	0.02	2.83	0.00
Close	2.59	1.28	3.84	3.19	0.50	0.59	0.31	0.01	0.02	2.89	0.00
N											
500	4.87	0.83	0.44	0.27	1.14	1.37	0.31	0.04	0.07	3.42	0.00
1,000	2.27	0.90	1.00	0.68	0.47	0.56	0.32	0.01	0.01	2.94	0.00
2,000	0.86	0.68	2.12	1.72	0.23	0.26	0.31	0.00	0.00	2.64	0.00
5,000	0.33	0.33	4.17	3.76	0.12	0.13	0.30	0.00	0.00	2.42	0.01
N.GF											
1	0.42	0.31	2.43	1.99	0.07	0.10	0.02	0.00	0.00	1.07	0.00
2	1.52	0.59	1.73	1.42	0.34	0.41	0.15	0.01	0.01	2.78	0.00
3	3.48	0.96	1.88	1.60	0.85	0.99	0.61	0.02	0.04	3.82	0.01
COR.GF											
0	1.62	0.40	1.24	0.99	0.40	0.48	0.28	0.01	0.02	2.49	0.00
0.30	2.77	1.12	2.97	2.54	0.62	0.73	0.35	0.02	0.03	3.40	0.00
VAR.GRF											
4	0.15	0.14	0.91	0.67	1.46	1.73	0.77	0.04	0.08	2.17	0.01
6	0.99	0.32	1.66	1.34	0.30	0.37	0.29	0.00	0.00	3.04	0.00
8	2.55	0.83	2.31	1.94	0.11	0.13	0.11	0.00	0.00	3.15	0.00
10	4.64	1.46	2.85	2.47	0.09	0.09	0.05	0.00	0.00	3.07	0.00
N.GRF											
4	1.24	0.46	1.60	1.29	0.26	0.33	0.18	0.01	0.02	2.27	0.01
5	2.03	0.68	1.93	1.60	0.47	0.56	0.31	0.01	0.02	2.79	0.00
6	2.98	0.92	2.27	1.93	0.73	0.86	0.44	0.01	0.02	3.51	0.00
CROSS.GRF											
0	2.06	0.69	2.00	1.67	0.38	0.47	0.01	0.01	0.02	2.88	0.00
0.15	2.06	0.69	1.96	1.64	0.49	0.59	0.15	0.01	0.03	2.93	0.00
0.30	2.12	0.68	1.83	1.51	0.60	0.69	0.76	0.01	0.02	2.76	0.01
LOAD.GRF											
Low	2.98	0.83	1.93	1.57	0.85	1.01	0.50	0.02	0.04	2.70	0.01
Medium	1.19	0.54	1.94	1.64	0.13	0.15	0.11	0.00	0.00	3.01	0.00
LOAD.GF											
Low	2.97	0.78	1.69	1.35	0.28	0.35	0.29	0.00	0.00	3.07	0.00
Medium	1.20	0.59	2.18	1.86	0.70	0.81	0.32	0.02	0.04	2.64	0.01
Total	2.08	0.69	1.93	1.61	0.49	0.58	0.31	0.01	0.02	2.86	0.00

Note. $\mathrm{K} 1=$ Kaiser eigenvalue greater-than-one criterion; $\mathrm{EKC}=$ empirical Kaiser criterion; $\mathrm{PA}_{\mathrm{PAF}}=$ parallel analysis with principal axis factoring; $\mathrm{PA}_{\mathrm{PCA}}=$ parallel analysis with principal components; $\mathrm{PA}_{P C A}$-FS $=$ parallel analysis with principal components on the first-order factor scores; EGA $=$ exploratory graph analysis; $\mathrm{EGA}_{\mathrm{LV}}=\mathrm{EGA}$ with Louvain; $\mathrm{EGA}_{\mathrm{LV}-\mathrm{FS}}=\mathrm{EGA}$ with Louvain on the first-order factor scores; $\mathrm{MF}=$ population misfit; $N=$ sample size; $\mathrm{N} . \mathrm{GF}=$ number of general factors; COR.GF $=$ correlation between general factors; VAR.GRF $=$ number of indicators per group factor; $\mathrm{N} . \mathrm{GRF}=$ number of group factors per general factor; CROSS.GRF $=$ cross-loadings in the group factors; LOAD.GRF $=$ loadings on the group factors; $\mathrm{LOAD} \cdot \mathrm{GF}=$ loadings on the general factors; MAE $=$ mean absolute error .

Table A3
Partial Omega Squared Coefficients (Ω^{2}) From the ANOVAs on the Absolute Error for the Recovery of the Group Factors for All the Nine Main Effects, and for the Remaining Coefficients Whose $\Omega^{2} \geq 0.14$ in At least One Factor Retention Method

Variable	Kaiser		PA ${ }_{\text {PAF }}$		PA ${ }_{\text {PCA }}$		$\mathrm{EGA}_{\text {LV }}$
	K1	EKC	M	95th	M	95th	
Main effects							
VAR.GRF	0.84	0.36	0.30	0.30	0.57	0.62	0.22
N	0.84	0.09	0.62	0.64	0.39	0.46	0.00
N.GF	0.72	0.12	0.05	0.04	0.29	0.31	0.18
LOAD.GF	0.58	0.02	0.05	0.06	0.15	0.16	0.00
LOAD.GRF	0.58	0.04	0.00	0.00	0.35	0.40	0.12
N.GRF	0.47	0.07	0.06	0.06	0.13	0.15	0.04
MF	0.31	0.44	0.75	0.71	0.00	0.00	0.00
COR.GF	0.09	0.17	0.47	0.45	0.00	0.00	0.00
CROSS.GRF	0.00	0.00	0.00	0.00	0.03	0.03	0.28
Two-way interactions							
VAR.GRF $\times N$	0.75	0.05	0.36	0.36	0.44	0.48	0.01
$N \times$ N.GF	0.63	0.01	0.07	0.05	0.20	0.23	0.00
VAR.GRF \times N.GF	0.60	0.03	0.06	0.05	0.28	0.30	0.14
$N \times$ LOAD.GF	0.44	0.04	0.03	0.03	0.06	0.07	0.00
VAR.GRF \times LOAD.GRF	0.42	0.01	0.00	0.00	0.45	0.48	0.09
VAR.GRF \times LOAD.GF	0.42	0.00	0.00	0.00	0.19	0.19	0.00
$N \times$ LOAD.GRF	0.41	0.03	0.00	0.00	0.26	0.30	0.00
VAR.GRF \times N.GRF	0.34	0.02	0.00	0.00	0.11	0.12	0.02
$N \times$ N.GRF	0.32	0.00	0.03	0.04	0.9	0.11	0.00
N.GF \times LOAD.GRF	0.30	0.01	0.04	0.03	0.16	0.17	0.08
N.GF \times LOAD.GF	0.30	0.00	0.02	0.01	0.05	0.05	0.00
VAR.GRF \times MF	0.20	0.35	0.31	0.32	0.01	0.01	0.00
N.GF \times N.GRF	0.18	0.00	0.02	0.01	0.06	0.06	0.02
LOAD.GF \times LOAD.GRF	0.14	0.00	0.00	0.00	0.09	0.09	0.00
$N \times \mathrm{MF}$	0.02	0.06	0.62	0.64	0.00	0.00	0.00
$\mathrm{MF} \times$ COR.GF	0.10	0.17	0.47	0.45	0.00	0.00	0.00
$N \times$ COR.GF	0.00	0.01	0.36	0.39	0.00	0.00	0.00
VAR.GRF \times COR.GF	0.04	0.10	0.13	0.13	0.00	0.00	0.00
VAR.GRF \times CROSS.GRF	0.00	0.00	0.00	0.00	0.05	0.05	0.33
N.GF \times CROSS.GRF	0.00	0.00	0.00	0.00	0.01	0.00	0.20
Three-way interactions							
VAR.GRF $\times N \times$ N.GF	0.47	0.04	0.03	0.02	0.18	0.19	0.01
VAR.GRF $\times N \times$ LOAD.GF	0.22	0.05	0.00	0.00	0.04	0.04	0.00
VAR.GRF $\times N \times$ LOAD.GRF	0.20	0.07	0.00	0.00	0.21	0.23	0.00
VAR.GRF $\times N \times \mathrm{N} . \mathrm{GRF}$	0.18	0.01	0.01	0.01	0.07	0.07	0.00
VAR.GRF \times N.GF \times LOAD.GRF	0.16	0.00	0.01	0.01	0.17	0.16	0.05
$N \times \mathrm{N} . \mathrm{GF} \times$ LOAD.GF	0.16	0.02	0.00	0.00	0.02	0.02	0.00
VAR.GRF \times N.GF \times LOAD.GF	0.15	0.00	0.00	0.00	0.04	0.04	0.00
$N \times$ N.GF \times LOAD.GRF	0.13	0.01	0.00	0.00	0.11	0.11	0.00
$N \times \mathrm{MF} \times$ COR.GF	0.00	0.01	0.36	0.39	0.00	0.00	0.00
VAR.GRF $\times N \times \mathrm{MF}$	0.02	0.03	0.34	0.34	0.00	0.00	0.00
VAR.GRF $\times N \times$ COR.GF	0.00	0.00	0.19	0.20	0.00	0.00	0.00
VAR.GRF \times MF \times COR.GF	0.04	0.10	0.13	0.13	0.00	0.00	0.00
VAR.GRF \times CROSS. $\mathrm{GRF} \times$ N.GF	0.00	0.00	0.00	0.00	0.01	0.01	0.22
VAR.GRF \times CROSS.GRF \times LOAD.GRF	0.00	0.00	0.00	0.00	0.01	0.01	0.13

Note. All the p-values corresponding to the effect sizes in bold are lower than $1 \mathrm{e}-16 . \mathrm{K} 1=$ Kaiser eigenvalue greater-than-one criterion; $\mathrm{EKC}=$ empirical Kaiser criterion; $\mathrm{PA}_{\mathrm{PAF}}=$ parallel analysis with principal axis factoring; $\mathrm{PA}_{\mathrm{PCA}}=$ parallel analysis with principal components; $\mathrm{EGA}_{\mathrm{LV}}=$ exploratory graph analysis with Louvain; $\mathrm{MF}=$ population misfit; $\mathrm{N} . \mathrm{GF}=$ number of general factors; $\mathrm{COR} . \mathrm{GF}=$ Correlation between general factors; $N=$ sample size; VAR.GRF = number of indicators per group factor; $\mathrm{N} . \mathrm{GRF}=$ number of group factors per general factor; $\mathrm{CROSS} . \mathrm{GRF}=$ cross-loadings in the group factors; LOAD.GF $=$ loadings on the general factors; LOAD.GRF $=$ loadings on the group factors.

Estimated Loadings for the HEXACO-100 With 24 Group Factors (Excluding the Altruism Facet)

I

N
ন

 I O

促
 i

 On d
 O

 를

 O
Table A4 (continued)

	General factors					Group factors																							
Item	G1	G2	G3	G4	G5	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24
68	0.04	0.17	0.00	0.00	-0.42	-0.02	-0.07	0.01	0.07	0.07	0.00	0.10	0.07	-0.02	0.04	0.01	0.06	0.05	0.00	-0.06	0.09	0.61	0.07	-0.05	0.03	-0.08	0.02	0.05	0.06
69	0.13	-0.06	0.02	0.08	-0.52	0.00	-0.02	-0.05	0.02	0.00	-0.09	0.03	0.03	-0.02	0.08	-0.09	0.05	0.00	0.06	0.02	0.24	0.01	0.20	-0.02	0.07	0.09	0.09	0.08	0.06
70	-0.01	-0.04	0.00	0.07	-0.56	0.01	0.11	-0.07	-0.05	0.05	-0.06	0.10	0.06	-0.01	0.01	0.04	-0.02	0.07	0.00	0.05	0.26	0.12	0.38	-0.02	-0.03	0.04	0.03	0.01	-0.02
71	0.07	-0.03	0.07	-0.11	-0.42	-0.05	0.03	-0.03	0.14	0.08	0.02	0.12	0.07	0.00	0.05	0.08	-0.04	-0.07	-0.01	-0.01	0.11	0.27	0.54	-0.02	0.02	0.01	0.09	-0.09	-0.06
72	-0.10	0.02	-0.04	-0.02	0.65	-0.05	-0.04	-0.07	-0.07	0.13	0.11	-0.01	0.02	0.01	0.05	-0.01	-0.06	0.03	0.03	-0.06	0.13	0.04	-0.42	0.08	-0.08	-0.11	-0.05	-0.12	-0.03
73	-0.05	0.09	0.10	-0.04	-0.34	-0.03	0.04	-0.04	-0.01	0.07	-0.07	0.03	-0.01	0.06	0.06	0.06	0.00	-0.09	-0.09	-0.05	0.28	0.07	0.10	-0.46	0.01	0.08	0.00	0.05	0.00
74	0.05	-0.09	-0.09	0.00	0.44	-0.08	0.08	-0.07	0.06	-0.01	0.00	0.01	0.01	-0.09	0.05	-0.05	0.03	-0.04	0.02	0.01	0.10	-0.02	-0.06	0.36	-0.24	-0.02	-0.03	-0.12	-0.05
75	0.03	0.00	0.02	-0.11	0.57	0.05	-0.01	0.04	-0.09	0.05	0.03	-0.11	0.07	-0.03	0.02	0.04	-0.04	0.01	-0.06	-0.02	0.04	-0.03	-0.01	0.41	0.06	-0.01	-0.10	-0.07	-0.02
76	0.00	0.02	0.11	0.00	0.48	0.03	0.06	0.05	0.12	0.00	0.03	0.01	0.00	-0.01	0.08	0.10	0.13	-0.08	-0.01	-0.09	-0.11	-0.03	-0.05	0.43	-0.11	0.01	0.03	0.05	-0.02
77	-0.01	-0.03	0.09	0.03	0.54	0.01	-0.01	0.01	0.00	0.02	0.07	0.08	-0.07	-0.03	0.07	-0.05	0.00	0.03	0.07	0.03	0.04	0.03	-0.08	0.04	-0.66	-0.03	-0.03	0.04	0.00
78	0.08	0.08	0.16	-0.04	0.55	0.08	-0.01	0.09	0.02	-0.09	0.02	-0.04	0.06	-0.07	0.08	0.06	0.06	0.02	-0.02	-0.06	-0.04	-0.10	0.00	0.02	-0.41	-0.10	-0.03	0.04	0.11
79	-0.06	0.08	-0.05	-0.03	-0.40	0.11	-0.06	0.04	0.08	-0.05	-0.02	0.05	-0.01	-0.02	0.00	0.09	0.01	-0.05	0.05	0.07	0.11	0.06	0.04	-0.03	0.59	-0.08	0.03	0.13	0.05
80	-0.16	0.01	0.05	0.02	-0.51	0.02	0.01	-0.03	-0.05	-0.02	-0.04	0.00	0.08	0.00	0.01	-0.10	0.07	0.09	0.05	-0.03	0.09	0.23	-0.03	0.08	0.35	0.12	0.02	0.06	0.14
81	0.03	0.09	0.17	-0.05	0.35	-0.02	0.08	0.01	0.04	-0.14	0.03	0.02	0.06	-0.06	-0.06	0.06	0.10	-0.01	-0.02	-0.03	0.10	0.09	0.09	-0.04	0.08	0.62	0.01	0.06	0.12
82	0.05	-0.08	-0.19	-0.08	- $\overline{0.31}$	0.06	0.02	-0.04	0.06	-0.07	-0.02	0.01	0.08	-0.06	-0.03	0.05	0.02	-0.01	-0.06	0.06	0.03	-0.06	0.02	0.01	-0.02	-0.58	-0.08	0.01	-0.03
83	-0.05	-0.21	-0.13	0.09	-0.31	-0.01	0.07	0.04	0.02	-0.05	-0.03	-0.05	0.06	-0.06	-0.06	0.04	0.06	0.01	-0.02	-0.03	0.05	0.02	-0.04	0.04	0.08	-0.51	-0.18	-0.14	0.00
84	0.05	0.01	0.23	0.05	0.29	0.04	0.07	0.12	-0.01	0.03	-0.07	0.06	0.10	0.01	-0.01	0.07	0.03	0.04	0.02	0.03	0.04	-0.06	0.01	-0.01	0.09	0.57	0.11	0.10	0.09
85	-0.01	-0.06	-0.20	-0.16	$-\overline{0.32}$	0.02	-0.06	0.03	0.03	-0.01	0.06	-0.14	0.02	0.07	0.00	0.09	0.08	0.05	-0.06	-0.03	0.12	-0.04	-0.02	-0.02	-0.06	-0.19	-0.42	-0.10	-0.02
86	-0.12	0.02	0.30	0.03	0.43	-0.11	0.05	0.01	-0.03	-0.07	0.00	0.01	0.02	0.06	0.04	-0.01	0.00	0.01	0.00	-0.06	0.07	-0.04	0.14	-0.01	0.04	0.06	0.63	0.10	-0.04
87	-0.25	0.00	0.29	0.04	0.39	-0.04	0.02	0.01	0.02	0.02	-0.01	-0.02	-0.04	-0.04	-0.04	-0.01	0.07	0.07	-0.08	0.03	0.00	-0.03	0.04	-0.02	0.06	0.07	0.67	0.01	0.00
88	-0.12	-0.03	0.29	-0.05	0.26	-0.01	-0.01	-0.02	-0.01	0.02	0.05	0.03	-0.06	-0.07	0.00	-0.03	0.01	-0.02	0.02	-0.01	0.05	0.04	-0.06	-0.04	-0.03	0.08	$\overline{0.66}$	0.01	0.07
89	-0.09	0.20	0.09	0.19	0.33	-0.02	0.08	0.02	0.02	0.03	-0.04	0.00	0.01	0.04	-0.04	-0.01	0.05	0.05	0.03	-0.09	0.00	0.01	-0.06	-0.03	-0.01	0.04	$\overline{0.03}$	0.65	0.13
90	-0.02	0.20	-0.04	0.07	0.44	0.07	-0.02	-0.08	0.02	-0.04	-0.01	0.04	0.09	0.07	-0.04	-0.01	-0.03	-0.05	-0.06	0.01	0.02	0.08	0.02	0.04	0.08	0.11	0.02	0.67	0.07
91	0.04	-0.09	0.07	-0.11	-0.60	-0.02	0.04	0.00	0.09	0.01	0.02	0.00	0.06	0.02	0.02	0.02	0.01	-0.04	0.05	0.08	0.02	-0.02	-0.25	0.13	-0.09	0.04	0.04	-0.42	0.07
92	0.09	0.19	0.08	0.08	0.41	0.04	-0.02	0.00	0.04	0.00	0.05	0.06	0.00	0.01	0.01	0.04	0.02	0.02	-0.02	-0.02	0.00	0.00	0.03	-0.08	-0.03	0.04	0.12	0.70	0.06
93	0.32	-0.26	0.00	0.03	-0.42	-0.04	-0.10	-0.03	0.02	-0.02	0.02	0.10	0.11	-0.01	0.05	-0.02	0.08	0.03	-0.08	-0.11	0.05	-0.09	0.04	0.04	-0.10	0.01	-0.09	-0.06	-0.40
94	-0.31	-0.02	0.08	0.00	0.41	0.08	-0.08	0.09	-0.11	-0.06	0.01	0.08	0.10	-0.04	0.07	-0.10	0.03	0.03	0.11	0.08	0.10	0.02	-0.03	-0.08	0.07	0.01	-0.02	0.12	0.39
95	-0.08	0.16	-0.04	-0.01	0.50	0.01	-0.05	0.08	-0.03	0.16	0.05	0.02	0.00	0.05	0.02	0.06	0.01	-0.06	0.05	0.06	0.06	0.06	0.03	0.06	0.03	0.16	0.04	0.29	0.47
96	0.28	-0.13	-0.01	0.00	$-\overline{0.48}$	-0.06	-0.06	-0.04	-0.03	0.06	0.00	0.00	-0.02	-0.03	-0.02	0.01	0.00	-0.03	0.08	-0.01	0.09	-0.12	0.01	0.05	-0.07	-0.13	0.03	-0.17	$-\overline{0.45}$

 Creativity; S $16=$ Unconventionality; S $17=$ Forgiveness; S $18=$ Gentleness; $\mathrm{S} 19=$ Flexibility; S $20=$ Patience; $\mathrm{S} 21=$ Sincerity; S $22=$ Fairness; S $23=$ Greed-Avoidance; S $24=$ Modesty

Table A5
Estimated Factor Correlations Between the General Factors for the HEXACO-100

	G1	G2	G3	G4	G5
G1	-				
G2	-0.17	-			
G3	0.03	-0.15	-		
G4	$\underline{\mathbf{0 . 2 1}}$	-0.06	0.01		
G5	$\underline{\mathbf{0 . 3 4}}$	$\mathbf{- 0 . 2 5}$	0.13	0.15	-

Note. Correlations with absolute values greater than 0.20 are shown in bold and underlined. G1 = Emotionality; G2 = Extraversion; G3 = Conscientiousness; G4 = Openness to Experience; G5 = Agreeableness/Honesty-Humility.

Received May 13, 2022
Revision received March 9, 2023
Accepted March 31, 2023

[^0]: ${ }^{1}$ Along the manuscript, we adopt the nomenclature of Yung et al. (1999) and Molenaar (2016), who considered the bifactor and the higher-order models as particular cases of hierarchical structures.

[^1]: ${ }^{2}$ We verified that this lack of improvement for $\mathrm{PA}_{\mathrm{PCA}}$ was due to the presence of population error. Removing the conditions with population error yielded a clearer increasing monotonic relationship between the HR and VAR.GRF

[^2]: ${ }^{3}$ Readers interested in the most relevant effect sizes found for K1, EKC, and $\mathrm{PA}_{\text {PAF }}$ can find them in Table A 3 from the Appendix.

