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Abstract

The accuracy of factor retention methods for structures with one or more general factors, like the ones typ-
ically encountered in fields like intelligence, personality, and psychopathology, has often been overlooked in
dimensionality research. To address this issue, we compared the performance of several factor retention
methods in this context, including a network psychometrics approach developed in this study. For estimating
the number of group factors, these methods were the Kaiser criterion, empirical Kaiser criterion, parallel
analysis with principal components (PApca) or principal axis, and exploratory graph analysis with
Louvain clustering (EGA;y). We then estimated the number of general factors using the factor scores of
the first-order solution suggested by the best two methods, yielding a “second-order” version of PApca
(PApcars) and EGAy (EGALy rs). Additionally, we examined the direct multilevel solution provided
by EGALy. All the methods were evaluated in an extensive simulation manipulating nine variables of inter-
est, including population error. The results indicated that EGA|y and PApca displayed the best overall per-
formance in retrieving the true number of group factors, the former being more sensitive to high cross-
loadings, and the latter to weak group factors and small samples. Regarding the estimation of the number
of general factors, both PApca_rs and EGA[y_gs showed a close to perfect accuracy across all the conditions,
while EGAyy was inaccurate. The methods based on EGA were robust to the conditions most likely to be
encountered in practice. Therefore, we highlight the particular usefulness of EGA;y (group factors) and
EGALy.gs (general factors) for assessing bifactor structures with multiple general factors.

personal use of the individual user

lely for the

Translational Abstract

The accuracy of factor retention methods for structures with one or more general factors, like the ones typ-
ically encountered in fields like intelligence, personality, and psychopathology, has often been overlooked in
dimensionality research. To address this issue, we compared the performance of several factor retention
methods in this context, including a network psychometrics approach developed in this study. For estimating
the number of group factors, these methods were the Kaiser criterion, empirical Kaiser criterion, parallel
analysis with principal components (PApca) or principal axis, and exploratory graph analysis with
Louvain clustering (EGAyy). We then estimated the number of general factors using the factor scores of
the first-order solution suggested by the best two methods, yielding a “second-order” version of PApca
(PApca.rs) and EGAry (EGALy rs). Additionally, we examined the direct multilevel solution provided
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The bifactor package is available at https://github.com/Marcosjnez/

Eduardo Garcia-Garzon (2 https://orcid.org/0000-0001-5258-232X bifactor and all the files necessary to reproduce the simulation data,
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analyses, and figures can be found at https://osf.io/u7qwj/. The data
used in this manuscript are open-access and were obtained from https://
osf.io/72zp3/. The experiment materials are available at https://osf.io/
u7qwj/.

The experimental materials are available at http://dx.doi.org/10.23668/
psycharchives.8261.
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by EGA| y. All the methods were evaluated in an extensive simulation manipulating nine variables of inter-
est, including population error. The results indicated that EGA|y and PApca displayed the best overall per-
formance in retrieving the true number of group factors, the former being more sensitive to high cross-
loadings, and the latter to weak group factors and small samples. Regarding the estimation of the number
of general factors, both PApca_gs and EGA[ y_gs showed a close to perfect accuracy across all the conditions,
while EGA;y was inaccurate. The methods based on EGA were robust to the conditions most likely to be
encountered in practice. Therefore, we highlight the particular usefulness of EGAy (group factors) and
EGALy.gs (general factors) for assessing bifactor structures with multiple general factors.

Keywords: dimensionality assessment, exploratory bifactor analysis, exploratory graph analysis, hierarchical

data, parallel analysis
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Dimensionality assessment plays a central role in psychometrics,
as it constitutes one of the cornerstone decisions during test valida-
tion. It is known that a wrong assessment misguides the construction
and refinement of psychological instruments, undermining also the
interpretability of the results from the forthcoming data analysis.
However, simulation studies that focus on bifactor structures with
multiple general factors are lacking in dimensionality research,
and it is uncertain how to proceed when assessing the dimensionality
of these structures. This comes as a surprise given the current pop-
ularity of bifactor models in fields like intelligence (Beaujean,
2015), personality (Abad et al., 2018), and psychopathology
(Bornovalova et al., 2020), where psychometric theories often com-
prise multiple general factors.

If we had reliable methods for assessing such complex structures, we
could test the evidence in favor or against the theories underpinning
these fields. Therefore, the aim of this study was three-fold: firstly,
investigating for the first time the capability of some popular factor
retention methods to uncover the number of group factors in bifactor
structures with one or multiple general factors. The second goal of
the study involved testing the performance of two new methods that
we developed to detect the number of general factors in these structures.
Finally, the third goal consisted of showing how these methods can be
applied to uncover the hierarchical structure of the HEXACO-100
using open data.

Bifactor Structures With Multiple General Factors

The main feature of bifactor models is that items are allowed to
simultaneously load on a collection of group factors (e.g., generosity
and tolerance), also called specific factors, and one general factor
(e.g., agreeableness), with the group factors representing narrower
traits that explain the common variance that is left after accounting
for the general factor (Reise, 2012).

Although the development of exploratory bifactor techniques is
still an active line of research, with proposals involving analytic
rotation criteria (Jennrich & Bentler, 2011) and target-based proce-
dures (Abad et al., 2017; Garcia-Garzon et al., 2019), they have
been recently generalized to cover more than one general factor.
Some examples are the two-tier hierarchical model of Tian and
Liu (2021) and the exploratory bifactor model with multiple gene-
ral factors of Jiménez et al. (2023; Figure 1). These generalizations
have the advantage of estimating several bifactor structures in a sin-
gle model, uncovering relationships that would remain hidden if
we performed independent bifactor analyses for each domain of
the factor structure (e.g., correlations and cross-loadings among
the general factors).

The incorporation of multiple general factors of the bifactor model
reflects the consensus that many psychological phenomena are hier-
archically organized, with the semantic content of narrow traits
being subsumed into broader, multiple general factors.! In fact,
there have already been some efforts to explore and test these hier-
archical organizations, such as the Hierarchical Taxonomy of
Psychopathology (HiTOP; Kotov et al., 2017; Ringwald et al.,
2023), which is a dimensional alternative to the Diagnostic and
Statistical Manual of Mental Disorders (DSM) that conceptualizes
psychopathology across different strata, namely symptoms, syn-
dromes, subfactors, and spectra. Detecting the organization of
such general traits is essential to make a comprehensive assessment
of the main pathological features of patients as well as to facilitate the
communication of diagnoses among mental health researchers and
professionals. In these regards, the bifactor model provides a way
to the estimation of general traits that are concomitant to the narrower
ones.

Despite recent advancements in exploratory bifactor analysis, its
application still requires a decision regarding the number of group
and general factors to extract. Up to now, simulation studies includ-
ing general factors are scarce and usually focus on structures with
second-order general factors instead of on the broader class of bifac-
tor structures. Bifactor models are only equivalent to second-order
models when proportionality constraints between the group and
general factors are satisfied (Mansolf & Reise, 2016), so simulations
covering the specific bifactor case are required to understand what
factor retention methods are suited to assess unrestricted hierarchical
organizations. In this context, some researchers have already inves-
tigated the behavior of parallel analysis (PA) methods (Crawford
et al., 2010; Green et al., 2015, 2016, 2018; Levy et al., 2021).
However, the extent to which other factor retention methods work
for this purpose is unknown and the quality of the recovery of the
number of general factors remains largely untested.

Dimensionality Assessment Methods

To overcome the lack of dimensionality assessment research in
bifactor structures with multiple general factors, we designed an
exhaustive simulation study. In this section, we review the rationale
behind all the factor retention methods that we decided to include in
the simulation to estimate the number of group factors. We also

! Along the manuscript, we adopt the nomenclature of Yung et al. (1999)
and Molenaar (2016), who considered the bifactor and the higher-order mod-
els as particular cases of hierarchical structures.
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Figure 1
Hllustration of a Bifactor Model With Two General Factors (G) and
Four Group Factors (S) for 12 Indicators (X )
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Note. The gray arrows represent cross-loadings among the group factors,

with each group factor having an indicator that cross-load on another group
factor.

7]
.;

A

mention their qualities and pitfalls as reported in the simulation lit-
erature. Finally, we describe a new procedure to determine the num-
ber of general factors.

The Kaiser Criterion

The Kaiser criterion (K1; Kaiser, 1960), also known as the
eigenvalue-greater-than-one criterion, is one of the first and most
popular factor retention methods. According to K1, the first &
greater-than-one eigenvalues of a correlation matrix are indicative
of k factors. This criterion was devised under the rationale that sub-
stantive factors should explain at least more variance than the aver-
age variance of the variables, which is one for correlation matrices,
and to prevent the estimated factors from having negative reliability
(Cliff, 1988). However, K1 gives an asymptotic lower bound for the
number of true dimensions (Guttman, 1954). At the sample level, its
low accuracy has been replicated by a large body of simulation
research (Auerswald & Moshagen, 2019; Ruscio & Roche, 2011;
Yeomans & Golder, 1982; Zwick & Velicer, 1986).

The poor performance of K1 can be attributed to the bias of the
sample eigenvalues. The first sample eigenvalue is the maximum
value obtained from the optimization problem argmax,cg X' SX,
where S is the sample correlation matrix and x is estimated from
the set of unit vectors (2. Subsequent eigenvalues are estimated sim-
ilarly, but constraining the new estimated vectors (i.e., eigenvectors)
to remain orthogonal to all the previous ones. This serial dependency
results in the first sample eigenvalues being upwardly biased, as they
have more variance to capitalize on by chance with fewer constraints.
Thus, the bias of the sample eigenvalues is inversely related to the
sample size and positively related to the number of variables, as
there is more noise in small samples with a large number of vari-
ables, leading K1 to overestimate the true number of factors.

However, learning this important shortcoming has not prevented
the widespread use of K1. Goretzko et al. (2021) reviewed the
exploratory factor analysis literature published between 2007 and
2017 in two psychological journals with a special focus on test

development and found that K1 was the most common method either
when several factor retention methods were simultaneously used
(55.6%) and when a single method was used (10.5%). To our knowl-
edge, the performance of K1 has not been investigated in the pres-
ence of general factors in a bifactor context.

The Empirical Kaiser Criterion

Braeken and Van Assen (2017) proposed the empirical Kaiser cri-
terion (EKC), a modification of K1 that considers the serial depend-
ency between the sample eigenvalues. EKC compares the sample
eigenvalues to reference eigenvalues (\EXC) that are sequentially
computed under a null model with no latent factors.
Asymptotically, if the variables are normally distributed, the eigen-
values of the sample correlation matrix follow the Mar“enko—Pastur
distribution (Mar“enko & Pastur, 1967). Hence, Braeken and Van
Assen (2017) set the first reference eigenvalue under the null
model ()\}fKC) to the expected value of the first sample eigenvalue
from the Mar enko—Pastur distribution, (1 4 /J/n)?, where n is
the sample size and J is the number of variables. The subsequent ref-
erence eigenvalues, )\FKC forj = {2, 3, , J}, are then computed mul-
tiplying this value by the average variance that is left after taking out
the first j — 1 factors, (J — Zﬁ-;(') N\)/(J —j+ 1), where Ag = 0. The
resulting reference eigenvalues can then be interpreted as an estimate
of the population value of \; if the null model of conditional inde-
pendence was true after accounting for j — 1 factors.

Altogether, the overall formula for computing the reference eigen-
values can be written as

J =Y
)\}EKC = max(%(l + /I /n), 1)~ (1)

Notice that the minimum reference eigenvalue is set to one to guar-
antee that, at the population level, K1 and EKC match in the number
of factors to retain, representing a lower bound for the true number of
factors (Guttman, 1954).

EKC has been suggested to be more robust than PA in conditions
involving few variables per factor and high factor correlations
(Auerswald & Moshagen, 2019; Bracken & Van Assen, 2017) and
in the presence of cross-loadings in multivariate normal data (Li
et al., 2020). However, its performance has not been tested in bifac-
tor structures.

Parallel Analysis

PA (Horn, 1965) has been considered the gold-standard method for
dimensionality assessment for many decades, with many simulation
studies recommending its use for either continuous (Fabrigar et al.,
1999; Lim & Jahng, 2019; Zwick & Velicer, 1986) and ordinal data
(Garrido et al., 2013, 2016; Timmerman & Lorenzo-Seva, 2011). PA
would emulate the sampling process of the original correlation matrix
if no latent factors were present, controlling the impact that the sample
size and the number of variables bear in the magnitude of the eigenval-
ues. Similarly to the EKC method, PA compares the sample eigenvalues
to reference eigenvalues obtained by simulating data from a null model,
with the first k sample eigenvalues greater than their corresponding ref-
erence eigenvalues being indicative of k meaningful factors.

The reference eigenvalues can be computed in many ways. In the
original formulation, Horn (1965) performed the principal
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component analysis in a large number of n x J matrices of uncorre-
lated normally distributed random variables, using the average of the
empirical distribution of the eigenvalues as the reference eigenval-
ues. Later proposals involved the use of the 95th percentile of the
empirical distribution instead of the mean (Buja & Eyuboglu,
1992; Glorfeld, 1995), the resampling of the observed data matrix
for generating new random data (PApca; Buja & Eyuboglu, 1992),
the replacement of principal components either by principal axis fac-
toring (PApar; Humphreys & Ilgen, 1969) or minimum rank factor
analysis (Timmerman & Lorenzo-Seva, 2011), and the assessment
of each j factor in a sequential manner, taking the j— 1 factor
model as the null model for generating random data (Green et al.,
2012).

Several simulation studies comparing different versions of PA
have found that even though no single method outperformed others
in all conditions, PApca presented the highest overall accuracy (Lim
& Jahng, 2019; Xia, 2021). However, other authors support employ-
ing PApr instead, arguing that it outperforms PApca under condi-
tions with multiple correlated factors (Crawford et al., 2010; Keith
et al., 2016). In the particular case of structures including general
factors (in both second-order and bifactor structures), Crawford
etal. (2010) found that PApca tended to recover the number of gene-
ral factors while PApar accurately recovered the number of group
factors. However, Lim and Jahng (2019) noted that this superiority
vanishes when the realistic condition of population error is included.
This current controversy prompted the examination of both methods
in our simulations.

Finally, concerning the cutoff value needed to derive the reference
eigenvalues, Xia (2021) showed that the performance of PApca
using the 95th percentile was more robust to model misspecification
than the mean value. In contrast, the mean of the empirical eigenval-
ues was more robust to multiple correlated factors. These results are
explained by stringent cutoffs ignoring minor factors and larger cut-
offs avoiding the collapse of correlated factors.

Exploratory Graph Analysis

Network psychometrics is an alternative method to factor analysis
to model and interpret psychological data. In a network model, a ran-
dom variable is a node connected to other nodes by edges represent-
ing their relationship after conditioning on all the other variables. In
the same way that factor models are commonly displayed with dia-
grams, networks models are visualized with a graph containing all
the nodes and edges connecting them, with nodes belonging to the
same cluster being placed closer, and edge’s thickness representing
the strength of the associations between the nodes (Figure 2).

For multivariate normal data, the most straightforward way to
model such pairwise relationships among the variables is using
their partial correlations. This is the simplest way of estimating a
Gaussian graphical model (GGM; Epskamp et al, 2018).
However, Epskamp and Fried (2017) warned that when two vari-
ables are conditionally independent, the partial correlation matrix
usually reflects spurious relationships due to sampling variation,
leading to large standard errors and unstable parameter estimates.
As a solution, regularization techniques such as the graphical least
absolute shrinkage and selection operator (GLASSO; Friedman
et al,, 2008) are used to estimate sparse partial correlations.
GLASSO regularization contains a tuning parameter controlling
the sparsity of the network that is selected by minimizing a

Figure 2
Graph of a Network Estimated With a Gaussian Graphical Model
and GLASSO
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Note. Each color represents a factor and the items were clustered with the
Louvain algorithm. GLASSO = graphical least absolute shrinkage and
selection operator. See the online article for the color version of this figure.

complexity function such as the Extended Bayesian Information
Criterion (EBIC; Chen & Chen, 2008). With this approach, small
partial correlations are shrunk toward zero, yielding a more parsimo-
nious and interpretative network with more unconnected nodes
reflecting conditional independence. Latent factors underlying the
data can then be related to clusters of nodes, with edges within a clus-
ter being stronger than between clusters (Golino & Epskamp, 2017).
Such reciprocity between clusters of nodes and latent variables is not
only justified by the fact that network models are statistically consis-
tent with factor models under certain conditions (Bork et al., 2021)
but also supported by empirical research and simulation studies
(Golino & Demetriou, 2017; Golino, Shi, et al., 2020).

Network psychometrics provides a foundation for Exploratory
Graph Analysis (EGA; Golino & Epskamp, 2017) as a factor reten-
tion method. Firstly, EGA estimates the partial correlations between
the variables by fitting a GGM with the GLASSO regularization and
then applies a community detection algorithm for weighted net-
works to classify items into clusters. Usually, the clustering is
achieved by maximizing modularity, an index measuring the extent
to which nodes within a cluster are more connected than between
clusters. Christensen et al. (2020a) performed a simulation compar-
ing eight clustering algorithms and found that the Louvain (Blondel
et al., 2008) and Walktrap (Pons & Latapy, 2006) algorithms (both
based on modularity) attained the best overall results in identifying
the true number of dimensions.

Interestingly, the Louvain algorithm can also provide a direct esti-
mate of the number of general factors. However, despite this appeal-
ing feature, no EGA method has ever been tested in bifactor
structures.

Assessing the Number of General Factors

If the number of group factors and their configural structure were
known, we could roughly estimate the number of general factors by
summing or averaging the items corresponding to each scale and
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then employing any previous factor retention method over the result-
ing scores. However, this strategy is unrealistic because the group-
factor dimensionality and the factor pattern are often unknown or
unclear.

One alternative is Goldberg’s Bass—Ackwards method (Goldberg,
2006), a sequential top-down approach that starts by estimating a
unidimensional exploratory factor model and continues extracting
and rotating more factors until no variable primarily loads on a fac-
tor. Then, the factor scores for each factor solution are estimated, and
their correlations are used to build a hierarchical representation of all
the factor solutions, with the first-factor solution depicted at the top,
followed by the two rotated factors solution, and so on. Then, high
correlations between an upper and a lower-order factor indicate the
perpetuation of the factor down the hierarchy. In contrast, medium
correlations between a certain upper and lower-order factor indicate
that the former was split into yield the latter, a narrower factor.

An inconvenient of the Bass—Ackwards method is that it rests on a
top-down approach, assessing first the higher-order factors in the
hierarchy. Condon et al. (2020) warned that top-down approaches
are at risk of missing important features of the factor structure. For
instance, they are unable to identify the presence of gaps in content
concerning the higher-order domains and are also susceptible to the
jingle-jangle fallacy (e.g., we are at risk of labeling with different
names the same trait down the hierarchy (jingle) and using the
same label for different traits (jangle)). In contrast, they argue for
a bottom-up approach that starts by assessing all the traits or nuances
that exhaust a domain, taking into account item complexity and facil-
itating item revision and content expansion.

An example of a bottom-up approach is the one proposed by
Golino, Thiyagarajan, et al., 2020). First, the authors estimated the
number of group factors using EGA. Secondly, they estimated a load-
ing matrix for the group factors from the fitted network and obliquely
rotated the structure employing geomin. Finally, they used the result-
ing first-order latent factor correlation matrix to perform a second-
order EGA, yielding an estimation of the number of general factors.
However, this procedure was developed to investigate the relationship
between several cognitive and health-related variables in the context
of aging research, and no exhaustive simulation was performed to
test its accuracy under different scenarios of interest.

In this study, we followed a bottom-up method based on the cor-
relation between the factor scores of the group factors, as they are
expected to reflect the latent dependencies between the general fac-
tors. We would like to remark that we are not the first in suggesting
nor using factor scores from lower-order factors to determine the
number of general factors (see Friborg et al., 2009; Milfont &
Duckitt, 2004). However, previous proposals were not fully
explicit or included steps that did not align with what we under-
stand for best practices (e.g., using composites of items for estimat-
ing the factor scores, performing orthogonal rotation, or using K1
to assess the number of general factors). The solution that we pro-
pose is straightforward and can be obtained through the following
steps: (a) estimate the number of group factors with some factor
retention method; (b) perform an oblique exploratory factor analy-
sis of the observed correlation matrix extracting the number of
group factors suggested in the previous step; (c) estimate the factor
scores with some method that contemplates correlated factors (e.g.,
Thurstone’s regression method); and (d) estimate the number of
general factors on the factor scores using the same factor retention
method employed in the first step.

Method
Simulation Design

Following a similar design to these found by Abad et al. (2017),
Garcia-Garzon et al. (2021), and Jiménez et al. (2023), nine vari-
ables were manipulated to create realistic full-rank bifactor structures
with one or multiple general factors: (a) number of general factors
(N.GF: 1, 2, 3); (b) correlation between the general factors
(COR.GF: 0, 0.30); (c) sample size (N: 500, 1,000, 2,000, 5,000);
(d) number of group factors per general factor (N.GRF: 4, 5, 6);
(e) number of variables per group factor (VAR.GRF: 4, 6, 8, 10);
(f) factor loadings on the general factors (LOAD.GF: low, medium);
(g) factor loadings on the group factors (LOAD.GRF: low, medium);
(h) model error or misfit (MF: zero, close); and (i) cross-loadings
among the group factors (CROSS.GRF: 0, 0.15, 0.30). These vari-
ables were crossed to yield a final number of 5,760 conditions,
after removing the incompatible conditions in which the number
of general factors was set to one but the correlation between the
general factors was not zero.

Factor loadings ranged from 0.30 to 0.50 for the low condition and
from 0.40 to 0.60 for the medium condition. The loadings on the
general factors were sampled from a uniform distribution, whereas
the loadings on the group factors varied by equal increments across
their variables (e.g., for the low condition with four items per group
factor, the population factor loadings were 0.30, 0.37, 0.43, and
0.50). To create conditions with cross-loadings, the item with the
greatest loading on each group factor had a cross-loading of 0.15
or 0.30 in another group factor. We maintained the communality
constant by subtracting a small value from the remaining nonzero
item loadings to make the conditions with and without cross-
loadings comparable (see Abad et al., 2017). To illustrate how the
data were simulated under these conditions, Table 1 shows a ran-
domly generated loading pattern matrix corresponding to a bifactor
model before and after introducing the cross-loadings. Bifactor
structures with more than one general factor were created by simply
joining these single bifactor structures.

Population Misfit

In real situations, the population correlation matrix between the
variables does not resemble the correlation matrix reproduced by
the true model parameters (MacCallum, 2003). In other words, all
models are misspecified because of many unmodeled minor factors
explaining some common item variance. According to this perspec-
tive, the true number of factors underlying a population correlation
matrix corresponds to the number of major factors, and the resulting
population misfit is interpreted as a trivial, nonsubstantive common
variance. In our simulations, a population misfit was created follow-
ing the method proposed by Cudeck and Browne (1992). This
method generates small random values that are added to the
population-implied correlation matrix such that fitting a confirma-
tory factor model with unweighted least squares (ULS) reproduces
the intended amount of misfit while preserving a global minimum
at the original model parameters, as long as the error is not excessive.

We selected the population standardized root mean square resid-
ual (SRMR) as the indicator of the amount of global misfit, follow-
ing Shi et al. (2018) and Ximénez et al. (2022). Shi et al. (2018)
investigated the behavior of the population SRMR under different
types and degrees of model misspecification to suggest a corrected
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cutoff for the population SRMR that corresponds to a close-fitting
model. They established that a close-fitting model at the population
level exists when (a) the largest absolute value of the standardized
residual covariance matrix <0.10, and (b) SRMR < 0.05 x Rz,
where R is the average communality of the manifest variables in
the population. For example, for conditions with medium loadings
(0.50) on both group and general factors, an exact close fit is
achieved if SRMR =0.05 x (0.50° +0.50%) = 0.025, and the abso-
lute value of the largest residual is < 0.10.

The choice of the SRMR was motivated by several reasons.
Firstly, the easiness of interpretation of the index. Second, the esti-
mated SRMR is more robust than RMSEA and CFI to different esti-
mation methods, like maximum likelihood and ULS (Xia & Yang,
2019). Finally, the unbiased SRMR is less sensitive than other fit
indexes to many of the variables manipulated in the current simula-
tion (i.e., incidental parameters; Saris et al., 2009), like the number
of items or the number of factors (Fan & Sivo, 2007; Shi et al., 2018;
Ximénez et al., 2022). For completeness, we also carried out the sim-
ulations without population error to use the results as a baseline for
comparison.

Data Generation and Analysis

Simulations were run in the R programming language, Version
4.2.2 (R Core Team, 2022). A population correlation matrix for
each condition was created and stored using the sim_factor function
from the R package bifactor, Version 0.1.0 (Jiménez, Abad, Garcia-
Garzon, Garrido, & Franco, 2022). Regarding the conditions involv-
ing population error, Cudeck and Browne (1992) warned that their
method only ensures a global minimum at the intended discrepancy
value when the generated error is small enough. Hence, to confirm
that close fit was ascertained in each condition, a confirmatory factor
analysis using the true model specification was fitted with ULS, and
the resulting SRMR was compared with the intended SRMR at a tol-
erance of 1x 10°. Similarly, we also checked whether the estimated
parameters were equal to the population parameters. The sim_factor
function was iterated until a positive definite correlation matrix with
the error was obtained and satisfied the aforementioned require-
ments. Table Al in the Appendix displays the average and worst
misfit values across every variable level for SRMR, as well as two
additional fit indices (CFI and RMSEA), and the maximum absolute
residual.

Once the population structures were created, we extracted 50 ran-
dom samples from a multivariate normal distribution for each popu-
lation correlation matrix using the function mvrnorm from the R
package MASS, Version 7.3-57 (Venables & Ripley, 2002). The
methods that we tested to identify the number of group factors in
these samples were K1, EKC, PApca, PApar, and EGApy. As our
simulations included model error and at the same time the group fac-
tors were correlated due to the presence of the general factors, we
decided to conduct PApcs and PApag with both the mean and the
95th percentile cutoffs. In addition, we decided to test EGA with
the Louvain algorithm (EGApy) because it performs at least as
well as the Walktrap algorithm and potentially provides a solution
with multilevel clusters (Christensen et al., 2020a). That is, the
Louvain algorithm creates clusters of items that, in turn, may be
grouped into higher-order clusters. Thereby, the lowest-level cluster
that EGA| y provided was used to estimate the number of group fac-
tors, while the highest-level cluster, when it existed, was taken to be

an estimate of the number of general factors. Another important
detail of EGALy is that it performs an initial check using the
Leading Eigenvector community detection algorithm (LE;
Newman, 2006) on the raw correlation matrix. LE is a clustering
method that also aims to maximize modularity. To achieve this,
the LE algorithm creates a modularity matrix (i.e., a matrix contain-
ing the difference between the observed and random edges’
strengths), computes its first eigenvector, and chooses the partition
that maximizes the modularity index in terms of this first eigenvec-
tor. This maximization is obtained when the positive values of the
eigenvectors are classified in one cluster and the negative ones are
classified in the other cluster. According to Christensen et al.
(2020a), LE provides an adequate balance between correctly recov-
ering one and more than one factor. As such, if LE delivered one fac-
tor, the data were judged to be unidimensional. Contrary, when it
estimated more than one factor, the Louvain algorithm was applied
instead.

We developed two new methods based on factor scores to estimate
the number of general factors, following the second-order procedure
described before, yielding an hierarchical version of both PA
(PApca.rs) and EGA (EGALy s). For these methods, we performed
two oblique factor analyses with ULS, extracting the number of fac-
tors suggested by PApca and EGA; y and rotating the solution with
direct oblimin. Then, we computed the factor scores of each solution
using Thurstone’s regression method. On the one hand, we decided
to use factor scores instead of the factor correlations because the lat-
ter would require the assumption of a particular distribution for the
factors in order to simulate data for PA. On the other hand, we chose
the Thurstone’s scores because they maximize validity (i.e., the cor-
relation between the factor scores and their corresponding factors),
so the proportion of indeterminacy in the factor scores is minimized
(Grice, 2001). Finally, for EGALy_rs, we used EGAy on the factor
scores obtained from the first-order solution and extracted the
highest-level cluster provided by the Louvain algorithm (using the
same LE check for unidimensionality as in the previous step).

We used the function parallel from the R package bifactor to con-
duct the methods based on PA. For all the PA methods, 100 random
data sets were created by within-variable permutation of the empirical
data set to obtain the mean and 95th percentile of the eigenvalues
under the null model of no latent factors. For the implementation of
EGA.vy, we used the function EGA from the EGAnet package,
Version 1.1.0 (Golino & Christensen, 2022). Importantly, the EGA
function does not provide the complete hierarchical solution but auto-
matically returns the dimensions that correspond to the highest-level
cluster of the hierarchy. Hence, when the LE algorithm determined
that the data were not unidimensional, we analyzed the estimated net-
work with the cluster_louvain function from the R package igraph,
Version 1.3.1 (Csardi & Nepusz, 2006), to obtain the complete muti-
level organization as estimated by the Louvain algorithm.

Following Garrido et al. (2016) and Golino, Shi, et al. (2020),
three indices were calculated to diagnose the accuracy of the meth-
ods. The first index is the hit rate (HR) or the proportion of correct
dimensionality assessments. While HR reflects each method’s accu-
racy, it does not provide information about the direction of the errors.
We thus computed the mean bias error (MBE), conceptualized as the
average difference between the estimated dimensionality and the
true dimensionality, with positive and negative values reflecting
overextraction and underextraction of the true number of factors,
respectively. Additionally, as these errors may cancel out in specific
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Table 1

Simulated Loadings for a Condition With One General Factor, Four Group Factors, and
Medium Loadings on Both the General and Group Factors

Simple structure

Cross-loadings

Item G S1 S2 S3 S4 h? G S1 S2 S3 S4 h2

1 0.45  0.60 0.57 040  0.56 030 0.57
2 047 053 0.51 047 053 0.51
3 051 047 0.48 051 047 0.48
4 0.58  0.40 0.50 0.58  0.40 0.50
5 0.44 0.60 0.55 039 030 0.56 0.55
6 0.58 0.53 0.62 0.58 0.53 0.62
7 0.59 0.47 0.56 0.59 0.47 0.56
8 0.53 0.40 0.44 0.53 0.40 0.44
9 0.53 0.60 0.64 0.48 030 0.56 0.64
10 0.41 0.53 0.45 0.41 0.53 0.45
11 0.44 0.47 0.41 0.44 0.47 0.41
12 0.44 0.40 0.35 0.44 0.40 0.35
13 0.54 0.60 0.65 0.49 030 0.56 0.65
14 0.48 053 051 0.48 053 051
15 0.55 047 052 0.55 047 052
16 0.50 040 041 0.50 0.40 041
Avg. 0.51 0.51

Note. When cross-loadings (underlined) were included, small values were subtracted from the loadings on
the general and group factors to maintain the original communality (h).

conditions, we also computed the mean absolute error (MAE),
which takes the mean of the absolute error values. Analyses of var-
iance (ANOVA) estimating up to third-order interactions among all
the experimental conditions were carried out using the absolute error
as the outcome. The partial omega squared (Q?) was then used as an
effect size to measure each model coefficient’s importance. We
decided to report all the main effects and only the interactions
whose corresponding © values were greater than 0.14 or close to
this threshold for at least one method, following Cohen’s criterion
for a large effect (Cohen, 1988).

All the simulated data, analysis code, and research materials are
available at https://osf.io/u7qwj/.

Results

Firstly, we present the marginal accuracies, biases, and absolute
errors obtained by each factor retention method with respect to the
true number of group factors. Then, we describe the two and third-order
interactions that were found for each method. Thirdly, we describe the
same results for the recovery of the number of general factors.

Our results suggested that the mean and the 95th percentile cut-
points behaved similarly across all the levels of the variables in
each PA method. Hence, for simplicity’s sake, we will only describe
the results of PApca and PApca_gs With the mean value and those of
PApr with the 95th percentile. This decision was motivated by the
fact that the mean value was slightly more accurate than the 95th per-
centile for PApca and PApca_ps Whereas the 95th percentile was
slightly more accurate than the mean value for PApap.

Recovery of the Number of Group Factors

Overall, EGAy was the method with the highest HR in detecting
the number of group factors (HR = 0.86), closely followed by PApca
(HR =0.83), and then by EKC (HR =0.70), PApsr (HR =0.64), and
K1 (HR =0.60; Table 2). If no population model error existed, PApar

would have been considered the best method, with an almost perfect
HR of 0.98. However, its accuracy was severely impacted when con-
sidering model error (HR[MF = close]=0.29). In a similar vein, EKC
and K1 also experimented a strong deterioration under this condition,
with absolute drops in accuracy of 0.45 and 0.32, respectively. In fact,
EKC would have been considered the second best method if no pop-
ulation error was simulated, with a HR of 0.93. On the other hand, the
effect of model error on PApca was moderate, whereas EGA|y
remained robust to population error.

The number of general factors was a critical variable in our results.
Under one general factor, the HRs of EGA| y and PApca were above
0.95. Whereas increasing the number of general dimensions from
one to three decreased the HR of K1 by 0.29 points, those of
EGALy and PApca by about 0.20 points, and that of EKC by 0.16
points, PApar moderately increased its accuracy. However, the accu-
racy of PApar in conditions with three general factors (HR[N.GF = 3]
=0.65) was still inferior to those of EGA;y (HR[N.GF =3] =0.76)
and PApca (HR[N.GF =3] =0.74). On the other hand, all the factor
retention methods were impaired by the presence of correlations
between the general factors, with EGA| v presenting the highest per-
formance in this situation (HR[COR.GF =0.30] =0.84).

However, EGALy did not always perform best. While it attained
almost perfect accuracy in simple structures (HR[CROSS.GRF =
0] =0.99), it showed drops of 0.10 (HR =0.89) and 0.29 points
(HR =0.70) when the size of the cross-loadings increased to
0.15 and 0.30, respectively. On the contrary, PApca was only
moderately affected by the presence of high cross-loadings, with
the former attaining the best average performance across high cross-
loadings conditions (HR[CROSS.GRF =0.30] =0.79). Conversely,
PApar, K1, and EKC were not affected by item complexity, but
their performances were still inferior to those of EGA;y and PApca
in the presence of medium and high cross-loadings.

Increasing the number of group factors per general factor nega-
tively affected all the methods. EGA;y and PApsr were only mod-
erately affected, with the former retaining the highest accuracy across
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Table 2

Marginal Hit Rates Across Each Variable Level for Each Factor Retention Method

Group factors

General factors

Kaiser PApar PApca PApca-rs
Variable K1 EKC M 95th M 95th EGA;v M 95th EGAy EGA;v.rs

MF

Zero 0.76 0.93 0.98 0.98 0.86 0.84 0.87 0.99 0.98 0.10 1.00

Close 0.44 0.48 0.21 0.29 0.81 0.80 0.86 0.99 0.99 0.09 1.00
N

500 0.33 0.62 0.72 0.79 0.68 0.64 0.84 0.97 0.95 0.06 1.00

1,000 0.55 0.66 0.63 0.69 0.85 0.83 0.86 0.99 0.99 0.09 1.00

2,000 0.72 0.73 0.53 0.57 0.90 0.89 0.87 1.00 1.00 0.11 1.00

5,000 0.81 0.81 0.50 0.51 0.91 0.91 0.89 1.00 1.00 0.13 1.00
N.GF

1 0.78 0.81 0.52 0.58 0.95 0.94 0.98 1.00 1.00 0.00 1.00

2 0.61 0.71 0.60 0.66 0.87 0.85 0.91 0.99 0.99 0.02 1.00

3 0.49 0.65 0.62 0.65 0.74 0.73 0.76 0.98 0.98 0.22 0.99
COR.GF

0 0.67 0.67 0.64 0.69 0.87 0.86 0.88 0.99 0.99 0.09 1.00

0.30 0.50 0.61 0.52 0.56 0.77 0.76 0.84 0.99 0.98 0.10 1.00
VAR.GRF

4 0.90 0.91 0.59 0.67 0.60 0.56 0.75 0.97 0.94 0.25 0.99

6 0.68 0.79 0.59 0.64 0.89 0.87 0.83 1.00 1.00 0.13 1.00

8 0.48 0.62 0.59 0.63 0.93 0.92 0.92 1.00 1.00 0.01 1.00

10 0.34 0.49 0.60 0.62 0.92 0.92 0.95 1.00 1.00 0.00 1.00
N.GRF

4 0.68 0.77 0.61 0.67 0.88 0.87 0.90 0.99 0.98 0.10 1.00

5 0.60 0.70 0.59 0.64 0.84 0.82 0.86 0.99 0.99 0.10 1.00

6 0.52 0.65 0.57 0.61 0.78 0.76 0.83 0.99 0.99 0.10 1.00
CROSS.GRF

0 0.61 0.72 0.60 0.65 0.87 0.86 0.99 0.99 0.98 0.07 1.00

0.15 0.60 0.71 0.60 0.64 0.84 0.82 0.89 0.99 0.98 0.08 1.00

0.30 0.59 0.69 0.58 0.63 0.79 0.78 0.70 0.99 0.99 0.14 0.99
LOAD.GRF

Low 0.52 0.67 0.59 0.64 0.75 0.72 0.80 0.98 0.97 0.18 0.99

Medium 0.68 0.74 0.60 0.63 0.92 0.91 0.93 1.00 1.00 0.02 1.00
LOAD.GF

Low 0.52 0.68 0.60 0.66 0.88 0.87 0.86 1.00 1.00 0.07 1.00

Medium 0.68 0.73 0.59 0.62 0.79 0.77 0.87 0.98 0.97 0.13 1.00
Total 0.60 0.70 0.59 0.64 0.83 0.82 0.86 0.99 0.99 0.10 1.00

Note.

K1 = Kaiser eigenvalue greater-than-one criterion; EKC = empirical Kaiser criterion; PApar = parallel analysis with principal axis factoring; PApca =

parallel analysis with principal components; PApca_gs = parallel analysis with principal components on the first-order factor scores; EGA = exploratory graph
analysis; EGA1y = EGA with Louvain; EGA;y_rs = EGA with Louvain on the first-order factor scores; MF = population misfit; N = sample size; N.GF =
number of general factors; COR.GF = correlation between general factors; VAR.GRF = number of indicators per group factor; N.GRF = number of group
factors per general factor; CROSS.GRF = cross-loadings in the group factors; LOAD.GRF = loadings on the group factors; LOAD.GF = loadings on the

general factors.

all the levels. However, K1, EKC, and PApca were more affected by
the increase in the number of group factors from 4 to 6, showing
declines of 0.16, 0.12, and 0.10 points in accuracy, respectively.
On the other hand, increasing the number of variables per group fac-
tor also increased the accuracy of all the methods but K1, EKC, and
PApar. EKC and K1 were the most accurate methods across condi-
tions with four variables per group factor with HRs of 0.91 and 0.90,
respectively, but the worst across conditions with eight and 10 var-
iables (HR[VAR.GRF =10] =0.42 and HR[VAR.GRF = 10] =
0.34, respectively). Conversely, PApcs benefited by switching
from four to six variables per group factor (HR[VAR.GRF =4] =
0.60; HR[VAR.GRF =6] =0.89), but further increases in the
number of variables per group factor did not produce substantial
gains in accuracy.” Concerning EGA, v, it obtained the best HR in
conditions with the maximum number of variables per group factor
(HR[VAR.GRF =10] =0.96).

We further identified three results of interest. When switching
from medium to low loadings on the group factors, PApca, K1,
EGALy, and EKC were negatively impacted, with respective HR
drops of 0.17, 0.16, 0.13, and 0.07 points, respectively. Again,
EGA, y was the best method across the most unfavorable condition
(e.g., HR[LOAD.GRF =low] =0.80). Secondly, concerning the
loadings on the general factors, lower loadings were moderately
associated with higher HRs for PApca with an absolute increase
of 0.09 points, but negatively impacted K1 and EKC with drops
of 0.16 and 0.05 points, respectively. EGA| y remained unaffected

2 We verified that this lack of improvement for PApca was due to the pres-
ence of population error. Removing the conditions with population error
yielded a clearer increasing monotonic relationship between the HR and
VAR.GRF.
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to the magnitude of the loadings on the general factors, whereas
PApar was robust to the magnitude of the general and group factor
loadings. Lastly, the sample size was positively related to the HR of
all the factor retention methods, with PApsr being again the
exemption. While PAp,r presented a good average performance
across small sample sizes (HR[N = 500] =0.80), it drastically
underperformed as the sample size increased (e.g., HR[N =35,
000] =0.51). Interestingly, the sample size had very little influence
on EGA.y, and for conditions with a sample size of 2,000 or
greater, PApca slightly outperformed EGApy with a HR about
0.90. K1 and EKC benefited from increased sample sizes but
only achieved an overall HR over 0.80 across conditions with a
sample of size 5,000.

The results for the MBE (Table 3) revealed that, following the
HR results, EGA[y and PApca were the least biased methods.
EGA;v and PApca underestimated the number of factors, with
overall MBEs of —0.29 and —0.44, respectively. EGA| y underex-
tracted the most in conditions involving few variables per
group factor (MBE[VAR.GRF =4] = —0.76) and high cross-
loadings (MBE[CROSS.GRF =0.30] = — 0.75). The worst per-
formance of PApca was observed under weakly defined group fac-
tors (MBE[VAR.GRF =4] = — 1.46; MBE[LOAD.GRF =low]
= —0.82) and low sample size (MBE[N=500] = —1.14).
Contrary to the underestimation of the previous methods, K1,
PApar, and EKC overextracted across all the variable levels with
the exemption of PApsr and EKC in conditions with no popula-
tion error, in which they were unbiased, and EKC in the conditions
with the minimum number of variables per group factor. Their
overall MBEs were 2.07, 1.58, and 0.63, respectively, with
K1 being particularly prone to overextraction in situations involv-
ing small sample size (MBE[N=500] =4.84), large factor
structures (MBE[VAR.GRF =10] =4.64; MBE[N.GF =3] =
3.45; MBE[N.GRF =6] =2.96), and low loadings on both the
general and group factors (MBE[LOAD.GF =low] =2.95;
MBE[LOAD.GRF =low] =2.95). K1 only showed an acceptable
performance for the conditions involving the maximum sample
size and the minimum number of variables per group factor. The
performance of PApar was particularly hindered in large sample
size conditions (MBE[N =5, 000] =3.75), population structures
with population error (MBE[MF = close] =3.17), and correlated
general factors (MBE[COR.GF =0.30] =2.51). Despite PApar
not being influenced by the number of variables per group
factor in terms of accuracy, the MBE indicated that it overextracted
more factors the more variables defined a group factor. In
the end, PApaf only showed an acceptable overall performance
for population structures without error and across conditions
with the minimum sample size. Globally, EKC was less biased
than K1 and PApar, but it overextracted factors with the maximum
number of variables per group factor (MBE[VAR.GRF =10] =
1.46) and when population error was present (MBE[MF = close]
=1.23).

Because the estimation biases may cancel out when computing
marginal means, we further assessed the precision of the factor reten-
tion methods with the MAE (Table A2 in the Appendix). However,
the MAE followed a similar pattern to the MBE across all the manip-
ulated levels and will not be further discussed.

As the overall performances of K1, EKC, and PApsr were much
worse than those of PApca and EGALy in the presence of popula-
tion error, in Table 4, we only show the Q7 effect sizes obtained for

PApca and EGApy from the analysis of variance.’ PApca was
most sensitive to VAR.GRF, a variable also involved in all the
large two-way and three-way interactions. These interactions
showed that the effect of other variables (LOAD.GF,
LOAD.GRF, N, and N.GF) was smaller as the number of variables
per group factor increased. Lower loadings on the group factors
were very detrimental when the group factors were defined by
fewer variables, especially in smaller samples (Figure 3(a);
Qz[VAR.GRF x N x LOAD.GRF] =0.22). Similarly, having
more general factors was increasingly deleterious when fewer var-
iables loaded on the group factors, particularly when the sample
size was smaller (Figure 3(b); Q’[VAR.GRF x N x N.GF] =
0.18). Noteworthy, for samples of size 1,000 or larger and at
least six indicators per group factor, the negative effect of having
lower loadings on the group factors and more general factors was
small. Another three-way interaction indicated that PApc, tended
to underperform more with lower loadings on the group
factors when fewer variables defined them and when there were
more general factors (Figure 4; Q’[VAR.GRF x N.GF x
LOAD.GRF] =0.16). In other words, with an increasing number
of general factors, more indicators per group factor might be
needed if their quality is low. Finally, an interaction indicated
that higher loadings on the general factors were more detrimental
when the group factors were defined by only a few items (Figure 5;
Q?[VAR.GRF x LOAD.GF] =0.19). That is, better-defined
group factors counterbalanced the effect induced by the presence
of stronger general factors (e.g., higher correlations among the
variables that loaded on the same general factor but different
group factors).

Concerning EGAy y, the results of the ANOVA revealed that it
was sensitive to the number of variables per group factor, the num-
ber of general factors, and the presence of cross-loadings among
the group factors. All the effects produced by these variables
were smaller on EGA| y than on PApca, except those involving
cross-loadings. When there were no cross-loadings, EGA[y
remained robust to weakly defined group factors (i.e., few vari-
ables per group factor with low loadings), and larger factor struc-
tures. Small cross-loadings started to become detrimental only in
structures with three general factors or low loadings on the group
factors if the number of variables per group factor was eight
or smaller. However, the effect of high cross-loadings was very
detrimental when the group factors had fewer variables in
structures with more than one general factor (Figure 6(a);
O’[VAR.GRF x CROSS.GRF x N.GF] =0.22) or with lower
loadings on the group factors (Figure 6(b); Q*[VAR.GRF x
CROSS.GRF x N.GF] =0.13). Such detrimental effect of cross-
loadings, in interaction with the aforementioned variables,
was small whenever eight or more variables defined each group
factor.

Recovery of the Number of General Factors

Despite the good performance of the lowest-level cluster of
EGA_y in identifying the number of group factors, it only identi-
fied a higher layer of clusters in 42% of the simulated data sets.

3 Readers interested in the most relevant effect sizes found for K1, EKC,
and PApar can find them in Table A3 from the Appendix.
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Table 3
MBE Across Each Variable Level for Each Factor Retention Method

Group factors

General factors

Kaiser PA])A]: PAPCA PAPCA-FS
Variable K1 EKC M 95th M 95th EGALy M 95th EGALy EGALv.Fs

MF

Zero 1.56 0.02 0.01 —0.01 —0.48 —-0.57 —-0.30 —0.01 —0.02 0.64 0.00

Close 2.58 1.23 3.83 3.17 —0.40 —0.49 —-0.29 —0.01 —0.02 0.70 0.00
N

500 4.84 0.62 0.40 0.16 —1.13 —1.37 —0.26 —0.03 —0.07 1.48 0.00

1,000 2.25 0.88 1.00 0.68 —0.44 —0.54 —0.31 0.00 —0.01 0.86 0.00

2,000 0.85 0.67 2.12 1.72 —0.16 —0.20 —0.31 0.00 0.00 0.39 0.00

5,000 0.33 0.33 4.17 3.76 —0.01 —0.02 —0.30 0.00 0.00 —0.05 —0.01
N.GF

1 0.41 0.31 243 1.99 —0.07 —0.10 0.02 0.00 0.00 —0.88 0.00

2 1.51 0.56 1.73 1.41 —0.31 —0.39 —0.14 0.00 —0.01 0.12 0.00

3 3.46 0.84 1.86 1.54 -0.75 —0.89 —0.61 —0.02 —0.04 2.00 —0.01
COR.GF

0 1.61 0.34 1.23 0.96 —0.40 —0.48 —0.26 —0.01 —0.02 0.40 0.00

0.30 2.76 1.05 2.96 2.51 —0.49 —0.61 —-0.35 —0.01 —0.02 1.08 0.00
VAR.GRF

4 0.09 —0.10 0.88 0.59 —1.46 —1.73 —0.76 —0.04 —0.08 1.41 —0.01

6 0.99 0.31 1.65 1.32 —0.29 —0.36 —0.28 0.00 0.00 1.20 0.00

8 2.55 0.83 2.31 1.94 —0.04 —-0.07 —0.10 0.00 0.00 0.40 0.00

10 4.64 1.46 2.85 247 0.05 0.03 —0.04 0.00 0.00 —-0.33 0.00
N.GRF

4 1.23 0.44 1.60 1.28 —0.24 —0.31 —0.17 —0.01 —0.02 —0.26 —0.01

5 2.02 0.63 1.92 1.58 —0.42 —0.51 -0.29 —0.01 —0.02 0.61 0.00

6 2.96 0.81 2.25 1.88 —0.65 -0.77 —0.42 —0.01 —0.02 1.67 0.00
CROSS.GRF

0 2.06 0.66 2.00 1.66 —0.33 —0.42 0.00 —0.01 —0.02 0.20 0.00

0.15 2.06 0.64 1.95 1.62 —0.43 —0.53 —-0.14 —0.01 —0.03 0.62 0.00

0.30 2.09 0.58 1.81 1.47 —0.55 —0.65 —0.75 0.00 —0.01 1.19 —0.01
LOAD.GRF

Low 2.95 0.71 1.90 1.52 —-0.82 —0.98 —0.48 —0.02 —0.04 1.32 —0.01

Medium 1.19 0.54 1.94 1.64 —0.05 —0.08 —0.11 0.00 0.00 0.03 0.00
LOAD.GF

Low 2.97 0.71 1.68 1.34 —0.24 —0.31 —0.28 0.00 0.00 0.80 0.00

Medium 1.17 0.54 2.16 1.82 —0.63 —0.75 —0.31 —0.02 —0.04 0.55 —0.01
Total 2.07 0.63 1.92 1.58 —0.44 —0.53 —-0.29 —0.01 —0.02 0.67 0.00
Note. K1 = Kaiser eigenvalue greater-than-one criterion; EKC = empirical Kaiser criterion; PApsr = parallel analysis with principal axis factoring; PApca =

parallel analysis with principal components; PApca_gs = parallel analysis with principal components on the first-order factor scores; EGA = exploratory graph
analysis; EGA1y = EGA with Louvain; EGA;y_rs = EGA with Louvain on the first-order factor scores; MF = population misfit; N = sample size; N.GF =
number of general factors; COR.GF = correlation between general factors; VAR.GRF = number of indicators per group factor; N.GRF = number of group
factors per general factor; CROSS.GRF = cross-loadings in the group factors; LOAD.GRF = loadings on the group factors; LOAD.GF = loadings on the

general factors; MBE = mean bias error.

Even in these cases, it often provided a wrong estimation of the
number of general factors, with an overall HR of 0.24.
Therefore, we did not seek to analyze this method in further anal-
yses. Similarly, K1, EKC, and PApf were inaccurate for detecting
the number of group factors in situations of model misfit, so they
were not further considered, as explained before. In contrast, the
estimation of the number of general factors was extraordinarily
accurate using either PApca_gs or EGAL vy _gs. These methods pre-
sented HRs close to one and mean absolute errors close to zero
across all the variable levels (Tables 2 and 4). The minimum mar-
ginal HRs and maximum marginal mean absolute errors for
PApca.rs happened in the conditions with few variables per
group factor (HR =0.97, MAE =0.04, VAR.GRF =4) and small
sample size (HR =0.97, MAE =0.03, N =500). On the other
hand, EGAvy.rs had an almost perfect performance across all
the variable levels. Interestingly, none of the estimated Q? effect

sizes for either method were high (Table 4). For PApca_rs, the
maximum Q7 value associated with a main effect was 0.03, and
for EGALV-FS, 0.01.

The HEXACO-100 Inventory

The HEXACO-100 Inventory (Lee & Ashton, 2018) is an instru-
ment that was designed to display a robust hierarchical structure of
personality traits. It aims to measure 25 personality traits (i.e., group
factors) and six domains (i.e., general factors) using 100 items, four
items by trait. The domains (G) and traits (S) are listed as follows:
Emotionality (G1), Fearfulness (S1), Anxiety (S2), Dependence
(S3), Sentimentality (S4); Extraversion (G2), Social Self-Esteem
(S5), Social Boldness (S6), Sociability (S7), Liveliness (S8);
Conscientiousness (G3), Organization (S9), Diligence (S10),
Perfectionism (S11), Prudence (S12); Openness to Experience (G4),
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Table 4

Partial Omega Squared Coefficients (Q?) From the ANOVAs on the Absolute Error
for All the Nine Main Effects, and for the Remaining Coefficients Whose Q° > 0.14
or Close in At Least One Factor Retention Method

Group factors General factors

Coefficients PApca EGALv  PApcars EGALv.Es
Main effects
VAR.GRF 0.57 0.22 0.03 0.01
N 0.39 0.00 0.02 0.00
N.GF 0.29 0.18 0.01 0.00
LOAD.GF 0.15 0.00 0.01 0.00
LOAD.GRF 0.35 0.12 0.01 0.00
N.GRF 0.13 0.04 0.00 0.00
MF 0.00 0.00 0.00 0.00
COR.GF 0.00 0.00 0.00 0.00
CROSS.GRF 0.03 0.28 0.00 0.01
Two-way interactions
VAR.GRF x LOAD.GRF 0.45 0.09 0.03 0.01
VAR.GRF x N 0.44 0.01 0.06 0.00
VAR.GRF x N.GF 0.28 0.14 0.02 0.01
N x LOAD.GRF 0.26 0.00 0.02 0.00
N x N.GF 0.20 0.00 0.01 0.00
VAR.GRF x LOAD.GF 0.19 0.00 0.02 0.00
N.GF x LOAD.GRF 0.16 0.08 0.01 0.00
VAR.GRF x CROSS.GRF 0.05 0.33 0.00 0.02
N.GF x CROSS.GRF 0.01 0.20 0.00 0.01
Three-way interactions
VAR.GRF x N x LOAD.GRF 0.21 0.00 0.06 0.00
VAR.GRF x N x N.GF 0.18 0.01 0.04 0.00
VAR.GRF x N.GF x LOAD.GRF 0.17 0.05 0.02 0.01
VAR.GRF x N.GF x CROSS.GRF 0.01 0.22 0.00 0.02
VAR.GRF x LOAD.GRF x CROSS.GRF 0.01 0.13 0.00 0.01

Note.

All the p-values of the effect sizes shown in bold are lower than 1e-16. PApca = parallel

analysis with principal components; PApca_rs = parallel analysis with principal components on
the first-order factor scores; EGA = exploratory graph analysis; EGA;y = EGA with Louvain;
EGALv.rs = EGA with Louvain on the first-order factor scores. MF = population misfit;
N.GF =number of general factors; COR.GF = correlation between general factors; N=
sample size; VAR.GRF = number of indicators per group factor; N.GRF = number of group
factors per general factor; CROSS.GRF = cross-loadings in the group factors; LOAD.GF =
loadings on the general factors; LOAD.GRF = loadings on the group factors; ANOVAs =

analysis of variance.

Aesthetic Appreciation (S13), Inquisitiveness (S14), Creativity (S15),
Unconventionality (S16); Agreeableness (GS5), Forgiveness (S17),
Gentleness (S18), Flexibility (S19), Patience (S20); Honesty-Humility
(G6), Sincerity (S21); Fairness (S22), Greed-Avoidance (523),
Modesty (S24). The 25th factor is interstitial and corresponds to
Altruism. This factor is not embedded in the hierarchical organization
of the HEXACO personality theory, so it was not considered in the
forthcoming analyses.

To investigate this hypothetical structure of 24 group factors and
six general factors, we used a sample of 647 undergraduate students
enrolled in an Australian university (Anglim et al., 2022; Wood et
al., 2022). Dimensionality and statistical analyses in this sample
were done in R (R Core Team, 2022) under the 4.2.2 Version. The
hierarchical exploratory graph analysis (i.e., EGApy and
EGALy.rs) was performed with the hierEGA function from the
EGAnet package (Golino & Christensen, 2022), Version 1.2.4,
whereas the hierarchical parallel analysis (i.e., PApca and
PApca.rs) Was done with the parallel function from the bifactor
package (Jiménez, Abad, Garcia-Garzon, Garcia-Garzon, et al.,
2022), Version 0.1.0.

The data and script to run the analysis are available in the online
repository https://osf.io/u7qwj/. The specific commands for execut-
ing the hierarchical methods are as follows:

# Load the Student data from the OSF repository:

student <- as.matrix(read.csv('article/analysis/student.csv"))
library(EGAnet) # Load the library to perform hierarchical EGA
hierega <- hierEGA(student, "factor")

library(bifactor) # Load the library to perform hierarchical PA

hierPA <- parallel(student, TRUE, "PCA", TRUE)

The hierarchical exploratory graph analysis yielded 24 group fac-
tors and five general factors, whereas the hierarchical PA resulted in
13 group factors and five general factors using both the mean and the
95th percentile. Such a large discrepancy between EGA;y and
PApc, in the number of group factors may be due to a number of
reasons that were not considered in the current simulation: first, in
our simulation design, we considered structures up to three general
factors whereas in this empirical example there could be even six
according to theory. Second, while the simulated data were


https://osf.io/u7qwj/
https://osf.io/u7qwj/

allied publishers.

This document is copyrighted by the American Psychological Association or one of its

personal use of the individual user

lely for the

=
()
=)
=1
Q
2]
)

=

12 JIMENEZ ET AL.

Figure 3

MAE for the Number of Group Factors for the PApca Method, as
Function of the Number of Variables per Group Factor, Sample
Size (N), and the LOAD.GRF (Panel a) or the N.GF (Panel b)
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Note. MAE = mean absolute error; PApcs = parallel analysis with prin-
cipal component analysis; LOAD.GRF = loadings on the group factors;
N.GF = number of general factors.

continuous and normally distributed, the HEXACO-100 data are
ordinal in nature, which may bear a greater impact on PApc, than
EGAy. Third, considering the size of the factor structure, the sam-
ple size, and the number of indicators per group factor were low.
These conditions were the ones that most impacted the performance
of PApc, in the simulation, producing underfactoring. As shown in
the panel b of Figure 3, the combination of four indicators per group
factor and a sample size of 500, which are the characteristics that
resemble most of the HEXACO-100 data, already produced a
mean absolute error around five in structures with three general fac-
tors. Thus, looking at this pattern, it would not be surprising that
PApca errors by more than 10 group factors in structures with five
or six general factors. A last reason that may impact the performance
of PApc, is the presence of causal relations between the group fac-
tors (Franco et al., 2022).

Figure 4

MAE for the Number of Group Factors for the PApca Method, as
Function of the Number of Variables per Group Factor, the N.GF,
and the LOAD.GRF
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Note. MAE = mean absolute error; PApca = parallel analysis with prin-

cipal components; LOAD.GRF = loadings on the group factors; N.GF =
number of general factors.

Figure 5

MAE for the Number of Group Factors for the PApca Method, as
Function of the Number of Variables per Group Factor and the
LOAD.GF
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Note. MAE = mean absolute error; PApca = parallel analysis with prin-

cipal components; LOAD.GRF = loadings on the group factors.

For these reasons, and because the group-factor dimensionality
obtained from EGA| y matched the HEXACO-100 theory, we fitted
a bifactor model with 24 group factors and five general factors using
the GSLiD algorithm (Jiménez et al., 2023). GSLiD is a recent
method for conducting exploratory bifactor analysis with multiple
general factors that consists of iteratively refining a partially speci-
fied target until no further refinement is required. Moreover,
GSLiD can penalize the correlations between the group factors
and estimate a model with only correlated general factors, so that
the item variance explained by the general and group factors can
be properly disentangled, providing more interpretable results than
completely oblique and orthogonal solutions.

Figure 6

MAE for the Number of Group Factors for the EGAry method, as
Function of the Number of Variables per Group Factor,
CROSS.GRF, and the N.GF (Panel a) or the LOAD.GRF (Panel b)
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Note. MAE = mean absolute error; EGAy = exploratory graph analysis

with Louvain clustering; CROSS.GRF = cross-loadings on the group fac-
tors; N.GF = number of general factors; LOAD.GRF = loadings on the
group factors.
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Tables A4 and AS from the Appendix display the estimated loading
matrix and factor correlations between the general factors, respec-
tively. We considered item loadings higher than 0.25 and factor cor-
relations higher than 0.20 to be substantive. As expected by the
HEXACO-100 theory, the items corresponding to Emotionality,
Extraversion, Conscientiousness, and Openness to Experience loaded
on distinctive general factors (except item 35 for Conscientiousness
and item 62 for Openness to Experience), whereas the items pertain-
ing to Agreeableness and Honesty-Humility loaded on a single gene-
ral factor. On the other hand, 81 items (84%) loaded on their expected
group factors. The indicators that did not conform to the theoretical
pattern are listed next: item 2 (Fearfulness), items 17, 18, 19, and
20 (Social Self-Esteem), item 29 (Liveliness), items 38 and 40
(Diligence), items 46, 47, and 48 (Prudence), items 61, 62, and 64
(Unconventionality), and item 69 (Gentleness). Finally, the absolute
values of the correlations between the general factors were
low-to-moderate, ranging from 0.25 to 0.34.

In conclusion, the underlying structure of the HEXACO-100
(excluding the Altruism facet) is compatible with a theoretical
model of 24 group factors and five general factors (Figure 7), with
low-to-moderate loadings and factor correlations. Notwithstanding,
we would like to remark that this empirical example was developed
for illustrative purposes and that a more exhaustive analysis of the
HEXACO-100 data is required to ascertain its underlying structure.
For instance, a complete workflow would include checking for item
redundancies (Christensen et al., 2020b), assessing the stability of
the hierarchical solution by means of techniques such as bootstrap-
ping (Christensen & Golino, 2021), and interpreting the clusters.
This is a complex work that is worth an independent study.

Discussion

Dimensionality assessment is one of the most important decisions
that researchers face in test development and validation. It is well
known that wrong dimensionality assessments can severely bias
item parameter estimates and undermine the validity of test scores
(Fava & Velicer, 1992, 1996). Moreover, bifactor analysis applica-
tions would be better justified when empirical evidence supports
the dimensionality of the data at lower and higher levels of

Figure 7

Factor Loadings for the HEXACO-100 Data (Excluding the
Altruism Scale) From an Exploratory Bifactor Analysis With
Five General Factors and 24 Group Factors Estimated With
GSLiD
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Note. For Simplicity, the absolute value of the factor loadings is shown.
See the online article for the color version of this figure.

organization, revealing information that can be used for the posterior
model specification and statistical analysis.

Unfortunately, theory is not always enough to ascertain the number
of factors underlying a data set, and factor retention methods become
necessary. Today, there is little information on how to assess the
dimensionality of structures with factors subsumed into broader,
higher-order factors, like those encountered in intelligence, personal-
ity, and psychopathology. While many bifactor methods with either
one or multiple general factors have been developed recently to esti-
mate large and complex structures that account for the presence of
general factors (Abad et al., 2017; Cai, 2010; Garcia-Garzon et al.,
2019, 2020; Jennrich & Bentler, 2011; Jiménez et al., 2023; Nijera
et al., 2021), we still lack evidence-based recommendations on how
to assess the dimensionality of this kind of structures. This is a crucial
limitation because all of these methods assume that the number of
group and general factors are known.

Hence, in this study, we investigated for the first time the perfor-
mance of some classical and recent factor retention methods to
uncover the number of group and general factors in bifactor struc-
tures up to three general factors. Overall, we found that EGALy
was the most accurate, precise, and robust method for estimating
the number of group factors, followed by PApca, which was sensi-
tive to various conditions, namely the number of variables per group
factor, sample size, and loadings on the group and general factors.

These results align with previous research showing that PApca
underestimates the number of factors in conditions involving small
samples and large factor structures with weakly defined group fac-
tors (Bracken & Van Assen, 2017; Garrido et al., 2013; Yang &
Xia, 2015). Notwithstanding, the performance of PApca was very
high whenever the sample size was above 1,000, and the number
of variables per group factor was six or higher. Our findings also
agree with previous results in which EGA was highly robust to unfa-
vorable conditions, albeit using the Walktrap clustering algorithm
instead of Louvain (Cosemans et al., 2021; Golino & Epskamp,
2017; Golino, Shi, et al., 2020). The other tested factor retention
methods, K1, EKC, and PAp,p, did not perform well in estimating
the number of group factors when the population structures con-
tained misfit and were not further examined.

Interestingly, sample size and model misfit had little influence on
EGALy. A possible explanation for the latter finding is that the
GLASSO penalization shrinks toward zero small partial correlations
that appear due to trivial common variance attributable to population
error. However, the performance of EGA|y was not perfect. It was
sensitive to high cross-loadings, particularly in factor structures
with more than one general factor and weakly defined group factors.
This sensitivity of EGAy to high cross-loadings could be due to the
fact that the Louvain algorithm does not allow overlapping clusters
(Blanken et al., 2018; Christensen et al., 2020a). In other words,
items cannot be simultaneously classified in more than one cluster,
which increases the probability of incorrect placements if high cross-
loadings exist.

Within the PA methods, many researchers have suggested that
PApar is more suitable than PApcs for correlated psychological
data, both theoretically and empirically (Crawford et al., 2010;
Green et al., 2012; Keith et al., 2016). Particularly, Crawford et al.
(2010) found that PApar performed better than PApc, under multi-
ple correlated factors, second-order general factors, and bifactor
models. However, they did not consider the role of population
error in their simulations. As revealed in our results and in other
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studies such as Lim and Jahng (2019) and Xia (2021), the accuracy
of PApar greatly diminishes in the presence of trivial population
misfit and only outperforms other methods if, and only if, no popu-
lation error exists. Unfortunately, some sort of population misfit is
always expected to exist in applied settings. Moreover, PApag
tended to overextract factors with higher sample sizes and an increas-
ing number of variables per group factor. Therefore, we consider that
PApar is inappropriate for evaluating the dimensionality of bifactor
structures with one or multiple general factors. Contrary, PApca was
only moderately affected by the presence of close misfit, a result that
is also consistent with previous research (Lim & Jahng, 2019; Xia,
2021). On the other hand, using either the mean value or the 95th
percentile as the cutoff for computing the reference eigenvalues
did not result in a practical difference for PApca.

Overall, although EKC was better than K1, it showed a worse per-
formance than EGAyy and PApc, to most of the experimental con-
ditions (Table A3 in the Appendix). This result was explained by its
high sensibility to population error and a tendency to overextract fac-
tors the more variables defined the group factors. This pattern was
also observed for K1, resulting in even lower HRs and biased esti-
mates. Thus, these results agree with several decades of simulation
research in that K1 should never be used for dimensionality assess-
ment, especially in large factor structures like the ones often encoun-
tered in bifactor applications.

Regarding the estimation of the general factors, we found that
when EGA| y estimated more than one layer of clusters, the number
of factors suggested by the highest-level cluster was mostly inaccu-
rate. On the contrary, EGA| v_gs and PApca_gs had an almost perfect
accuracy across all the conditions, especially the former. More con-
cretely, EGA[y_rs produced an equal or higher performance than
PApca.rs and was highly robust to all the experimental conditions.

Globally, these results suggest that the number of general factors
could be estimated accurately even when EGA1y and PApca failed
to determine the correct number of group factors. Notwithstanding,
despite these encouraging results, a note of caution should be raised:
we do not recommend applying these hierarchical methods blindly.
These methods should only be considered when the correlations
between the factor scores are not trivially small. In other words,
we recommend inspecting the first-order factor correlation matrix
before interpreting the estimates provided by EGApy.gs and
PApca.rs. Otherwise, we would be at risk of inferring the presence
of general factors, when there is no more variance to explain beyond
the one, accounted for the first-order factors.

To illustrate how the proposed hierarchical dimensionality anal-
yses can be done in R software, we analyzed a real data set concern-
ing the personality traits of the HEXACO-100 Inventory, which is
intended to measure 24 hypothetical facets (measured by four items
each) embedded within six general domains. Whereas PApca
yielded a too conservative estimation of the number of group fac-
tors (13), EGALy estimated 24, as expected by the theory. The
defective performance of PApca can be explained by the low sam-
ple size (N=0647) and few indicators per group factor of the
HEXACO-100, conditions in which PApcs was more prone to
underfactor in the simulation. Contrary, both PApca.rs and
EGAL v s suggested five general factors. To investigate the factor
structure of the HEXACO-100, we conducted an exploratory bifac-
tor analysis with 24 group factors and five general factors using the
GSLiD algorithm (Jiménez et al., 2023). As a result, the estimated
loadings resembled most of the HEXACO-100 theory.

Interestingly, the items pertaining to the Agreeableness and
Honesty-Humility scales merged in a single general domain,
whereas most of the group factors were recovered (e.g., 21 of the
24 group factors were defined by at least two of their theoretical
indicators).

An advantage of our hierarchical proposals over Goldberg’s
Bass—Ackwards method is that they are based on a bottom-up
approach. We first focus on estimating the number of lower-order
factors and then proceed with the higher-order ones. This way,
we are able to identify the nuances that make up the more general
traits, encouraging the analysis of item content and domain’s
breadth (Condon et al., 2020; Mottus et al., 2020). We also remark
that EGApv_gs is somewhat similar to the second-order method
proposed by Golino, Thiyagarajan, et al. (2020). The main differ-
ences between our and their approach are that we used the
lowest-level cluster provided by the Louvain algorithm instead of
Walktrap and analyzed the correlation matrix between the factor
scores instead of the correlation matrix between the rotated factors,
which does not require computing the factor scores. Future simula-
tion studies may consider including the method of Golino,
Thiyagarajan, et al. (2020) to check whether it performs as well
as EGALv_Fs.

This simulation study tried to emulate real data with conditions
involving population misfit and cross-loadings, but it has some lim-
itations: first, we only generated continuous data from multivariate
normal distributions. With categorical data, polychoric correlation
matrices, and skewed distributions, the performance of all the meth-
ods should deteriorate, and the extent to which this would happen is
unknown. If this is the case, it would also be interesting to compare
alternative factor or network scoring methods to establish which are
optimal for the recovery of the number of general factors. Second,
we only generated factor structures up to three general factors,
whereas some cases of psychological data may contain more. This
limitation was due to the fact that controlling population misfit in
conditions involving more than three general factors is a difficult
task, as larger factor structures produce correlation matrices closer
to nonpositiveness. Forthcoming work will be needed to solve
these technical issues inherent to bifactor structures with multiple
general factors. Notwithstanding, the current simulation is the first
one that systematically investigates the dimensionality assessment
of factor structures with a varying number of general factors, and
it is a good first step toward developing tools for factor retention
in fields like intelligence, personality, and psychopathology, where
the statistical models usually display a hierarchical configuration.

Although the specific factor structures simulated in this study are
bifactor, it is important to note that second-order structures can be
interpreted as bifactor structures with proportionality constraints
between the general and group factors (Jiménez et al., 2023). In
other words, second and higher-order structures are constrained ver-
sions of bifactor structures and, as such, our simulation setup pro-
vides results that are generalizable to a larger range of hierarchical
structures. Hence, we think that the hierarchical factor retention
methods developed here will help to disentangle the different levels
of organization of complex data in the broad field of individual dif-
ferences regardless of the specific factor model (i.e., bifactor or
higher-order). These factor analytic models require a decision
regarding the number of factors to extract, we also believe that
these hierarchical methods can help to justify or guide model spec-
ification in applied research.
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In conclusion, we aimed to provide applied researchers with accu-
rate methods that can help them to uncover hierarchical structures in
their data, and our results suggest that PA with principal component
analysis and exploratory graph analysis with the Louvain algorithm,
when applied to items and then to the first-order factor scores, offer
a good recovery of the dimensionality of the hierarchical structure.
As different variables impact these two methods, researchers may
use them in tandem or according to the known or plausible character-
istics of their data. Noteworthy, EGA| y not only was the best method
in terms of accuracy, precision, and robustness for the conditions most
likely to be encountered in practice, but also provides a classification
of items into factors, offering a richer dimensionality assessment that
can be easily compared with the theoretical expectations of the factor
structure. Furthermore, the stability of the EGA;y and EGA|y gs
latent solutions can be readily ascertained using bootstrap procedures
currently available (Christensen & Golino, 2021). Thus, we highlight
the particular usefulness of EGA; y and EGA| y gs for assessing bifac-
tor structures with one or multiple general factors. Finally, much more
attention should be considered to the number of group factors, as the
second-order methods depend on this quantity, and they are harder to
estimate than the number of general factors.
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Appendix
Table A1
Marginal Fit Indices for Each Variable Level
Variable SRMR RMSEA CFI Absolute residuals
N.GF
1 0.0209 (0.0263) 0.0266 (0.0298) 0.9933 (0.9902) 0.0711 (0.0998)
2 0.0209 (0.0266) 0.0217 (0.0288) 0.9869 (0.9801) 0.0803 (0.0997)
3 0.0209 (0.0263) 0.0214 (0.0274) 0.9808 (0.9702) 0.0789 (0.0999)
COR.GF
0 0.0209 (0.0266) 0.0219 (0.0298) 0.9865 (0.9702) 0.0777 (0.0999)
0.30 0.0209 (0.0264) 0.0216 (0.0281) 0.9846 (0.9732) 0.0782 (0.0995)
VAR.GRF
4 0.0209 (0.0266) 0.0224 (0.0298) 0.9851 (0.9702) 0.0739 (0.0988)
6 0.0209 (0.0264) 0.0218 (0.0288) 0.9857 (0.9716) 0.0774 (0.0999)
8 0.0209 (0.0261) 0.0215 (0.0273) 0.9860 (0.9730) 0.0793 (0.0993)
10 0.0209 (0.0259) 0.0214 (0.0270) 0.9862 (0.9727) 0.0809 (0.0998)
N.GRF
4 0.0209 (0.0266) 0.0220 (0.0298) 0.9868 (0.9754) 0.0758 (0.0997)
5 0.0209 (0.0263) 0.0217 (0.0291) 0.9857 (0.9729) 0.0783 (0.0994)
6 0.0209 (0.0263) 0.0216 (0.0293) 0.9847 (0.9702) 0.0795 (0.0999)
CROSS.GRF
0 0.0209 (0.0262) 0.0217 (0.0298) 0.9857 (0.9702) 0.0771 (0.0999)
0.15 0.0209 (0.0264) 0.0218 (0.0294) 0.9859 (0.9717) 0.0778 (0.0995)
0.30 0.0209 (0.0266) 0.0218 (0.0295) 0.9856 (0.9713) 0.0787 (0.0998)
LOAD.GRF
Low 0.0187 (0.0224) 0.0194 (0.0248) 0.9874 (0.9770) 0.0707 (0.0988)
Medium 0.0231 (0.0266) 0.0241 (0.0298) 0.9841 (0.9702) 0.0851 (0.0999)
LOAD.GF
Low 0.0186 (0.0220) 0.0194 (0.0252) 0.9840 (0.9702) 0.0704 (0.0992)
Medium 0.0231 (0.0266) 0.0241 (0.0298) 0.9875 (0.9780) 0.0854 (0.0999)
Total 0.0209 (0.0266) 0.0218 (0.0298) 0.9857 (0.9702) 0.0779 (0.0999)

Note. The mean value is displayed in bold, and the single worst fit value is displayed in parentheses. SRMR = standardized root mean squared residual;
RMSEA = root mean square error of approximation; CFI = comparative fit index; N.GF = number of general factors; COR.GF = correlation between
general factors; VAR.GRF = number of indicators per group factor; N.GRF = number of group factors per general factor; CROSS.GRF = cross-loadings in
the group factors; LOAD.GRF = loadings on the group factors; LOAD.GF = loadings on the general factors.
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Table A2
MAE Across Each Variable Level for Each Factor Retention Method
Group factors General factors
Kaiser PApar PApca PApca-rs
Variable K1 EKC M 95th M 95th EGALy M 95th EGALy EGALv.Es
MF
Zero 1.57 0.09 0.02 0.02 0.48 0.57 0.31 0.01 0.02 2.83 0.00
Close 2.59 1.28 3.84 3.19 0.50 0.59 0.31 0.01 0.02 2.89 0.00
N
500 4.87 0.83 0.44 0.27 1.14 1.37 0.31 0.04 0.07 342 0.00
1,000 2.27 0.90 1.00 0.68 0.47 0.56 0.32 0.01 0.01 2.94 0.00
2,000 0.86 0.68 2.12 1.72 0.23 0.26 0.31 0.00 0.00 2.64 0.00
5,000 0.33 0.33 4.17 3.76 0.12 0.13 0.30 0.00 0.00 242 0.01
N.GF
1 0.42 0.31 243 1.99 0.07 0.10 0.02 0.00 0.00 1.07 0.00
2 1.52 0.59 1.73 1.42 0.34 0.41 0.15 0.01 0.01 2.78 0.00
3 3.48 0.96 1.88 1.60 0.85 0.99 0.61 0.02 0.04 3.82 0.01
COR.GF
0 1.62 0.40 1.24 0.99 0.40 0.48 0.28 0.01 0.02 249 0.00
0.30 2.77 1.12 297 2.54 0.62 0.73 0.35 0.02 0.03 3.40 0.00
VAR.GRF
4 0.15 0.14 0.91 0.67 1.46 1.73 0.77 0.04 0.08 2.17 0.01
6 0.99 0.32 1.66 1.34 0.30 0.37 0.29 0.00 0.00 3.04 0.00
8 2.55 0.83 231 1.94 0.11 0.13 0.11 0.00 0.00 3.15 0.00
10 4.64 1.46 2.85 2.47 0.09 0.09 0.05 0.00 0.00 3.07 0.00
N.GRF
4 1.24 0.46 1.60 1.29 0.26 0.33 0.18 0.01 0.02 2.27 0.01
5 2.03 0.68 1.93 1.60 0.47 0.56 0.31 0.01 0.02 2.79 0.00
6 2.98 0.92 2.27 1.93 0.73 0.86 0.44 0.01 0.02 3.51 0.00
CROSS.GRF
0 2.06 0.69 2.00 1.67 0.38 0.47 0.01 0.01 0.02 2.88 0.00
0.15 2.06 0.69 1.96 1.64 0.49 0.59 0.15 0.01 0.03 2.93 0.00
0.30 2.12 0.68 1.83 1.51 0.60 0.69 0.76 0.01 0.02 2.76 0.01
LOAD.GRF
Low 2.98 0.83 1.93 1.57 0.85 1.01 0.50 0.02 0.04 2.70 0.01
Medium 1.19 0.54 1.94 1.64 0.13 0.15 0.11 0.00 0.00 3.01 0.00
LOAD.GF
Low 2.97 0.78 1.69 1.35 0.28 0.35 0.29 0.00 0.00 3.07 0.00
Medium 1.20 0.59 2.18 1.86 0.70 0.81 0.32 0.02 0.04 2.64 0.01
Total 2.08 0.69 1.93 1.61 0.49 0.58 0.31 0.01 0.02 2.86 0.00

Note. K1 = Kaiser eigenvalue greater-than-one criterion; EKC = empirical Kaiser criterion; PApsr = parallel analysis with principal axis factoring; PApca =
parallel analysis with principal components; PApca_gs = parallel analysis with principal components on the first-order factor scores; EGA = exploratory graph
analysis; EGA[y = EGA with Louvain; EGA;y_rs = EGA with Louvain on the first-order factor scores; MF = population misfit; N = sample size; N.GF =
number of general factors; COR.GF = correlation between general factors; VAR.GRF = number of indicators per group factor; N.GRF = number of group
factors per general factor; CROSS.GRF = cross-loadings in the group factors; LOAD.GRF = loadings on the group factors; LOAD.GF = loadings on the
general factors; MAE = mean absolute error.
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Table A3

Partial Omega Squared Coefficients (€°) From the ANOVAs on the Absolute Error for the Recovery of
the Group Factors for All the Nine Main Effects, and for the Remaining Coefficients Whose 2> > 0.14
in At least One Factor Retention Method

Kaiser PAPA]; PAPCA
Variable K1 EKC M 95th M 95th EGALv
Main effects
VAR.GRF 0.84 0.36 0.30 0.30 0.57 0.62 0.22
N 0.84 0.09 0.62 0.64 0.39 0.46 0.00
N.GF 0.72 0.12 0.05 0.04 0.29 0.31 0.18
LOAD.GF 0.58 0.02 0.05 0.06 0.15 0.16 0.00
LOAD.GRF 0.58 0.04 0.00 0.00 0.35 0.40 0.12
N.GRF 0.47 0.07 0.06 0.06 0.13 0.15 0.04
MF 0.31 0.44 0.75 0.71 0.00 0.00 0.00
COR.GF 0.09 0.17 0.47 0.45 0.00 0.00 0.00
CROSS.GRF 0.00 0.00 0.00 0.00 0.03 0.03 0.28
Two-way interactions
VAR.GRF x N 0.75 0.05 0.36 0.36 0.44 0.48 0.01
N x N.GF 0.63 0.01 0.07 0.05 0.20 0.23 0.00
VAR.GRF x N.GF 0.60 0.03 0.06 0.05 0.28 0.30 0.14
N x LOAD.GF 0.44 0.04 0.03 0.03 0.06 0.07 0.00
VAR.GRF x LOAD.GRF 0.42 0.01 0.00 0.00 0.45 0.48 0.09
VAR.GRF x LOAD.GF 0.42 0.00 0.00 0.00 0.19 0.19 0.00
N x LOAD.GRF 0.41 0.03 0.00 0.00 0.26 0.30 0.00
VAR.GRF x N.GRF 0.34 0.02 0.00 0.00 0.11 0.12 0.02
N x N.GRF 0.32 0.00 0.03 0.04 0.9 0.11 0.00
N.GF x LOAD.GRF 0.30 0.01 0.04 0.03 0.16 0.17 0.08
N.GF x LOAD.GF 0.30 0.00 0.02 0.01 0.05 0.05 0.00
VAR.GRF x MF 0.20 0.35 0.31 0.32 0.01 0.01 0.00
N.GF x N.GRF 0.18 0.00 0.02 0.01 0.06 0.06 0.02
LOAD.GF x LOAD.GRF 0.14 0.00 0.00 0.00 0.09 0.09 0.00
N x MF 0.02 0.06 0.62 0.64 0.00 0.00 0.00
MF x COR.GF 0.10 0.17 0.47 0.45 0.00 0.00 0.00
N x COR.GF 0.00 0.01 0.36 0.39 0.00 0.00 0.00
VAR.GRF x COR.GF 0.04 0.10 0.13 0.13 0.00 0.00 0.00
VAR.GRF x CROSS.GRF 0.00 0.00 0.00 0.00 0.05 0.05 0.33
N.GF x CROSS.GRF 0.00 0.00 0.00 0.00 0.01 0.00 0.20
Three-way interactions
VAR.GRF x N x N.GF 0.47 0.04 0.03 0.02 0.18 0.19 0.01
VAR.GRF x N x LOAD.GF 0.22 0.05 0.00 0.00 0.04 0.04 0.00
VAR.GRF x N x LOAD.GRF 0.20 0.07 0.00 0.00 0.21 0.23 0.00
VAR.GRF x N x N.GRF 0.18 0.01 0.01 0.01 0.07 0.07 0.00
VAR.GRF x N.GF x LOAD.GRF 0.16 0.00 0.01 0.01 0.17 0.16 0.05
N x N.GF x LOAD.GF 0.16 0.02 0.00 0.00 0.02 0.02 0.00
VAR.GRF x N.GF x LOAD.GF 0.15 0.00 0.00 0.00 0.04 0.04 0.00
N x N.GF x LOAD.GRF 0.13 0.01 0.00 0.00 0.11 0.11 0.00
N x MF x COR.GF 0.00 0.01 0.36 0.39 0.00 0.00 0.00
VAR.GRF x N x MF 0.02 0.03 0.34 0.34 0.00 0.00 0.00
VAR.GRF x N x COR.GF 0.00 0.00 0.19 0.20 0.00 0.00 0.00
VAR.GRF x MF x COR.GF 0.04 0.10 0.13 0.13 0.00 0.00 0.00
VAR.GRF x CROSS.GRF x N.GF 0.00 0.00 0.00 0.00 0.01 0.01 0.22

VAR.GRF x CROSS.GRF x LOAD.GRF 0.00 0.00 0.00 0.00 0.01 0.01 0.13

Note. All the p-values corresponding to the effect sizes in bold are lower than le-16. K1 = Kaiser eigenvalue
greater-than-one criterion; EKC = empirical Kaiser criterion; PApar = parallel analysis with principal axis
factoring; PApca = parallel analysis with principal components; EGA|y = exploratory graph analysis with
Louvain; MF = population misfit; N.GF = number of general factors; COR.GF = Correlation between general
factors; N = sample size; VAR.GRF = number of indicators per group factor; N.GRF = number of group factors
per general factor; CROSS.GRF = cross-loadings in the group factors; LOAD.GF =loadings on the general
factors; LOAD.GRF = loadings on the group factors.
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NETWORK PSYCHOMETRICS APPROACH

Table AS
Estimated Factor Correlations Between the General Factors for the
HEXACO-100

Gl G2 G3 G4 G5
Gl —

G2 —0.17 —

G3 0.03 —0.15 —

G4 0.21 —0.06 0.01

G5 0.34 —0.25 0.13 0.15 —

Note. Correlations with absolute values greater than 0.20 are shown in bold and
underlined. G1 = Emotionality; G2 = Extraversion; G3 = Conscientiousness;
G4 = Openness to Experience; G5 = Agreeableness/Honesty-Humility.
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