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Abstract

To understand psychological data, it is crucial to examine the structure and dimensions of

variables. In this study, two Bayesian approaches were developed in network psychometric

models to explore the dimensionality structure of the data, termed as Bayesian exploratory

graph analysis or BEGA. Unlike traditional approaches that provide fixed parameter

estimates, BEGA estimates posterior probabilities of graphical structures to assess the

conditional dependence relations and then employs the Louvain community detection

algorithm to partition and identify groups of nodes, which enables to detect the

multidimensional factor structures. Monte Carlo simulations suggested that the two BEGA

methods had comparable or better performance when compared with the other

network-based method (EGA) and conventional parallel analysis (PA). When estimating

the multidimensional factor structure, the analytically based method (i.e., BEGA.A)

showed the best balance between accuracy and mean biased/absolute errors, with the

second highest accuracy slightly lower than EGA but with the smallest errors. The

sampling-based approach (BEGA.S) yielded higher accuracy and smaller errors than PA;

lower accuracy but also lower errors than EGA. Both Bayesian techniques had more stable

performance than EGA and PA across different data conditions. When estimating the

unidimensional structure, the PA technique performed the best, followed closely by

BEGA.A, EGA, and then BEGA.S. The study recommends using BEGA.A as an

alternative tool for assessing dimensionalities and advocates for the usefulness of BEGA.S

as a valuable alternate technique. The study suggested the potential to extend the

regularization-based network modeling EGA method to the Bayesian framework.

Keywords: Bayesian methods, network psychometrics, dimensionality assessment,

Louvain community detection algorithm, Bayesian Gaussian graphical model
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A Bayesian Approach for Dimensionality Assessment in Psychological Networks

Introduction

Examining the structure and dimensions of variables is essential to understand

many psychological data. Psychology typically uses measurement instruments to define a

domain of functioning. Identifying the underlying dimensions of the multivariate

psychological data is an important endeavor to determine how the data can be summarized

into a smaller set of meaningful variables (i.e., dimensions), which are often used as

inferences for psychological phenotypes. Analyzing data with overfactored dimensions often

runs the risk of misspecifying the model, harming predictions, and losing knowledge

translation. Furthermore, psychological theories often rely on detecting latent structures to

understand human traits, in the fields such as intelligence [Garcia-Garzon et al., 2019],

personality [Geiser et al., 2021], and creativity [Silvia, 2008]. Recovering the number of

latent factors plays a critical role in constructing psychological theories.

Multivariate psychological data are often perceived as proxies for latent variables

that interact with each other [Bollen, 2014]. Existing rules for assessing dimensions in

psychology are under the latent variable modeling framework and can be classified into

three categories [Garrido et al., 2016]. The first category applies: statistical tests such as

maximum-likelihood, generalized least squares, and asymptotically distribution-free

methods to assess dimensions. The second category relates to the mathematical and

psychometric criteria including Kaiser-Guttman criterion [Kaiser, 1960], parallel analysis

[Horn, 1965], and the minimum average partial method [Velicer, 1976]. The third category

relies on rules of thumb, such as the scree test [Cattell, 1966] and variables with significant

loadings [Floyd and Widaman, 1995] to determine the number of factors. All the

above-mentioned estimation methods are based on the latent variable modeling framework,

in which observed variables are believed to co-occur due to an underlying unobserved

(latent) attribute that has caused the covariation between the observed variables.

Recently, a new perspective to understand psychological data has emerged with
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network models. By demonstrating that a general factor model can be estimated using a

fully connected network model, Van Der Maas et al. [2006] proposed using a network model

to examine the dynamic relationships between variables, which rest on reciprocal

mutualism or the idea that variables directly and mutually reinforce one another.

Methodological advances [Borsboom et al., 2011, Borsboom and Cramer, 2013] and

substantive applications [e.g., De Ron et al., 2021, Fried et al., 2015] have since increased

to study psychological behaviors in this area. Epskamp et al. [2016] introduced a network

model as a formal psychometric model, which proposes that symptoms, as measured by

psychometric items or scale scores, are directly and reciprocally cause each other

[Borsboom and Cramer, 2013, Cramer et al., 2010, van Bork et al., 2017, Van Der Maas

et al., 2006]. Network models conceptualize observed variables (e.g., symptoms) as nodes,

and links between nodes as edges that represent statistical relationships between symptoms

or behaviors [e.g., Epskamp et al., 2016]. Although psychological network models and

latent variable models possess contrasting perspectives regarding why variables are related,

numerous studies have demonstrated that both models are statistically consistent under

certain conditions in the binary [Chandrasekaran et al., 2010, van Bork et al., 2017],

polytomous [Christensen et al., 2023], and continuous [Epskamp et al., 2016, Marsman

et al., 2018, van Bork et al., 2017] data. The network structures of nodes and edges are

commonly estimated in network psychometrics using Gaussian graphical model [GGM;

Lauritzen, 1996] for normally distributed data. Built upon GGM, which described the

conditional dependence structures of psychological constructs [Lauritzen, 1996, Wainwright

et al., 2008], Golino and Epskamp [2017] developed a new assessment technique using a

network modeling perspective. The technique, exploratory graph analysis [EGA; Golino

and Epskamp, 2017], estimates a network and then applies a clustering algorithm to assess

the factor dimensionality. Golino and Epskamp [2017], Golino et al. [2020] found an equal

or superior performance of EGA to conventional latent variable based techniques in

assessing factor structures. The researchers showed through a decomposition using
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Woodbury matrix identity [Woodbury, 1950] that oblique factors are statistically

consistent with clusters of nodes (i.e., sets of connected nodes) and orthogonal factors are

statistically consistent with unconnected clusters in GGM, when the data generation

mechanism is a factor model. Christensen and Golino [2021] showed that factor loadings

are statistically consistent with a modified version of node strengths (i.e., sum of all

connections to a node) that takes into consideration of the dimensionality structure,

represented as network loadings.

Most commonly, network models are estimated using frequentist inference [Epskamp

and Fried, 2018] and then assessed for dimensionality. Bayesian network estimation

methods, however, possess some advantages over frequentist methods. First, rather than

obtaining a fixed point estimate, the Bayesian technique provides full posterior probability

distributions for the edges that capture connections between variables. The posterior

distributions provide a basis for constructing the point and interval estimates, where

Bayesian inferences can be easily drawn [Gelman et al., 2015]. The regularization based

approach, on the other hand, studies point estimates but does not yield sampling

distributions, thus posing limitations for further statistical inference [Hastie et al., 2009].

Second, by focusing on the posterior probabilities for the edges, the Bayesian approach

quantifies the sampling uncertainty via probabilities. The Bayesian method numerically

calculates the relational uncertainties between nodes and applies the decision rules to

generate network sparsity that are consistent with substantive interpretatbility.

Additionally, one’s prior belief and knowledge can be incorporated into the Bayesian

estimation process based on substantive theory. Thus, prior theory can play a role in

determining the network structure using the Bayesian method.

This study adds a Bayesian network psychometric model that combines network

science and Bayesian methodology to assess dimensionality in multivariate psychological

data. The remainder of the study is organized as follows. We first review the Bayesian

method for estimating the structure of the GGM and introduce a community detection
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algorithm to detect patterns in the network structures. We discuss decision rules in the

Bayesian estimation and develop two Bayesian network psychometric models to assess

dimensionality. We investigate the performance of the proposed Bayesian techniques using

two Monte Carlo simulation studies and end with discussion and future directions.

Bayesian Exploratory Graph Analysis

The study proposes a Bayesian network psychometric model, termed as Bayesian

exploratory graph analysis (BEGA), to assess dimensionality in multivariate data through

estimating a network structure in Gaussian graphical model [GGM; Lauritzen, 1996].

BEGA first estimates a GGM using Bayesian methods and then applies a clustering

algorithm to detect the undirected weighted network clusters. This section first introduces

two Bayesian approaches for estimating GGM and then discusses techniques to detect

network structures and assess multidimensional and unidimensional factor structures.

GGM

GGM captures the underlying conditional dependence structure [the partial

correlation network; Hojsgaard, 2008], in the multivariate normally-distributed data. Let y

be a random vector of k responses and is assumed to be normally distributed,

y ∼ Nk(µ, Σ), with the mean vector µ = (01, ..., 0k)′ and a k × k positive definite covariance

matrix Σ. By determining which off-diagonal elements in the precision matrix, Θ = Σ−1,

are nonzeros, the undirected weighted network graph is obtained and used to construct an

adjacency matrix. The adjacency matrix follows that Aij =


1, if θ ̸= 0, 1 ≤ i < j < k

0, otherwise

.

The precision matrix has a selected edge if the corresponding adjacency matrix has an

element 1, and zero otherwise. The selected edges, after being standardized and reversed

the sign, are partial correlations between two variables yi and yj, given all other variables

in y, y−(i,j) on their off-diagonal elements [Epskamp et al., 2018]. The partial correlations

show conditional dependency and are represented as
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Cor(Yi, Yj|y−(i,j)) = − θij√
θij

√
θij

. (1)

A weighted network is formed using partial correlations 1, in which each variable yk

represents a node, and the partial correlations between variables are represented as edges

between the nodes. A nonzero partial correlation represents the conditional dependence

between nodes, whereas the zero partial correlation represents that the two nodes are

independent conditional on all other nodes. Because the number of free parameters in the

precision matrix can grow quadratically with the number of variables, a sparse network is

typically assumed [Epskamp et al., 2017, Epskamp and Fried, 2018]. Conventionally, GGM

is estimated using the penalized maximum likelihood estimation, with a variant of the least

absolute shrinkage and selection operation [LASSO; Tibshirani, 1996] regularization

technique termed graphical LASSO [GLASSO; Friedman et al., 2008]. On the one hand, by

penalizing the model complexity while estimating the statistical model, regularization

converges to the true network structure under sparse networks [Ravikumar et al., 2011].

On the other hand, the regularized partial correlation network obtains a point estimate for

the edge rather than a sampling distribution, which limits statistical inference. Despite the

introduction of a nonregularized bootstrapping strategy to estimate Θ [Williams et al.,

2019], Williams [2021] advised against bootstrapping LASSO penalized estimates to

conduct significance tests, as the point mass at zero in sparse network likely results in the

distorted sampling distribution.

Bayesian methods for GGM

This study applies Bayesian methodology to estimate GGM. GGM can be estimated

either analytically or using posterior sampling in Bayesian methods [Williams, 2021]. In

the analytical approach, a Wishart prior distribution, which is conjugate for the precision

matrix Θ [Kubokawa and Srivastava, 2008], is used. Following a conjugate Wishart prior

W (ν, cIk) to Θ, with degrees of freedom ν, identity matrix Ik, and a constant c, the joint
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posterior density for the precision matrix Θ follows

p(Θ|Y ) ∝ p(Y |Θ)p(Θ),

where Y is a n × k matrix drawn from a multivariate normal distribution. Due to

conjugacy, the posterior distribution also has a Wishart distribution,

Θ|Y ∼ W (ν + n, (S + cIk)−1,

where n is the sample size and S is the sums of squares matrix Y ′Y . The posterior mode

and posterior variance have closed forms, as

argmaxΘp(Θ|Y ) = (ν + n − k − 1)(S + cIk)−1

and

var(Θ|Y ) = (ν + n)(S + cIk)−12 + dd
′),

where ν is the degrees of freedom and d = diag(S + cIk). Accordingly, the analytical

approach derives the graphical structure and constructs the posterior probabilities and

their credible intervals for the edges.

Although the analytical approach provides an accurate and efficient estimate for the

precision matrix Θ following a Wishart distribution [Roverato, 2002], it fails to capture the

sampling uncertainty as it does not produce posterior samples. A sampling-based approach

can instead be used to compute the posterior distribution for the partial correlation matrix

[Williams, 2021]. The sampling-based approach applies a noninformative Jeffrey’s prior

|Θ|(p+1)/2 and derives a posterior distribution that follows a Wishart distribution

Θ|Y ∼ W (n − 1, S−1). Sampling directly from the Wishart distribution is possible;

therefore, one can draw posterior samples, s = 1, ..., S to construct a posterior distribution

for the k × k partial correlation matrix [Barnard et al., 2000], which can be denoted as
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Σ = −([diag(θ)(s)]−1Θ(s)[diag(θ)(s)]−1),

where θ are the square roots of diag(Θ). The conditional dependency and practical

independent relations between edges can be determined based on the posterior probability

distribution of the partial correlation matrix (Kruschke 2011).

Level of sparsity

Unlike the conventional GLASSO-based approach that applies a shrinkage on edges,

Bayesian estimation does not directly produce a sparse network. Bayesian methods obtain

nonzero partial correlation estimates for GGM. The nonzero small estimates typically

represent weak edges, which are spurious or false positive connections in the network, even

among conditionally independent nodes [Costantini et al., 2015]. In the current study, we

propose penalizing model complexity by controlling for the level of sparsity.

We use Bayesian credible intervals to limit spurious edges and yield a sparse

estimate for Θ in BGGM. The Bayesian credible intervals, built upon the posterior

probability distribution for Θ, summarize the posterior probability that the true edge

effect is within an interval. A 90% credible interval demonstrates that there is a 90%

probability that the true network structure (i.e., edges) falls within the specified interval

range. While larger credible intervals indicate a higher level of sparsity in Θ, low credible

intervals lead to non-zero elements in the network. In an extreme case when the credible

intervals fall into zero, all the off-diagonal elements in the precision matrix are non-zeros

and Θ becomes the original Wishart posterior distribution. Specifying credible intervals is

analogous to stating specificity in this context. One can relate specificity to the significance

level α, mathematically denoted as

specificity = T rue Negatives
T rue Negatives+F alse P ositives

= 1 − False Positive Rate = 1 − α, and determine

an interval on the directional posterior probability, which corresponds to the Bayesian

p-values [Williams, 2021]. It is advisable to select a level of specificity that is consistent
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with the underlying substantive theory. In other words, one establishes credible intervals

based on how likely an unknown network structure lies within a particular range. The

sampling-based and the analytic-based approaches converge asymptotically at a designated

level of specificity [Williams, 2021]. Typically, the sampling-based approach needs a larger

sample to realize the desired specificity as the technique computes the partial correlations,

which can be nonnormal in small samples [van Borkulo et al., 2022].

The current study will use both the analytic-based and sampling-based Bayesian

approaches to estimate GGM and compare their performances. In this study, we will adopt

a 90% credible interval for the sampling-based Bayesian technique to demonstrate the

confidence level of the true network structures and limit spurious edges. Researchers may

designate other credible intervals to fit into their underlying theoretical framework.

Clustering algorithm

We assess the underlying factor structure of the multivariate data by applying a

community detection algorithm to the estimated graphical networks. After estimating

BGGM through Bayesian methods and applying the designated level of specificity to the

sampling-based technique, one obtains graphical networks representing relationships

between nodes. In a psychological context, the nodes having a similar psychological

construct are densely connected, whereas the nodes with orthogonal constructs are

expected to be further away. In previous studies that used GLASSO to estimate the GGM,

the links between nodes belonging to the same construct are expected to be stronger than

the connections between nodes from distinct constructs [Golino and Epskamp, 2017, Golino

et al., 2020]. In this study, we use the Louvain community detection algorithm [Blondel

et al., 2008] to the graphical structures to detect the optimal partitions in a network and

define the dimensions in the data.

The community detection algorithms can be understood through the concept of

modularity [Newman, 2006]. Modularity measures the degree of connectivity between
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nodes in a community. The Louvain algorithm initiates a separate individual community

for each node and records the modularity in this state; the algorithm then moves each node

into a neighboring community and notes down a new modularity. The change in

modularity between both states is compared. The node remains in the original community

if the modularity has no gain and belongs to the adjacent community if there is a gain in

modularity. This is an iterative process until the modularity does not improve and a local

maxima is achieved. Hierarchical network structures can be further detected through

aggregating networks in Louvain. Specifically, the algorithm moves individuals to an

aggregated network, records the modularity at each state, and compares the connectivity

(i.e., modularity) between states to optimize the partitions. The process is repeated until a

global maxima between the expected and actual number of edges is achieved in a

community [Christensen et al., 2023, Gates et al., 2016].

We suggest utilizing the Louvain algorithm for the proposed method for three

primary reasons. First, Christensen et al. [2023] discovered through a well-planned

simulation that when coupled with GLASSO, the Louvain algorithm was one of the most

effective approaches to identify network community structures. Gates et al. [2016] had a

similar finding when exploring brain network correlation structures. Second, the Louvain

has the advantage of detecting hierarchical structures [Blondel et al., 2008, Jimenez, M.,

Abad, F. J., Garcia-Garzon, E., Golino, H., Christensen, A. P., and Garrido, 2022, Gates

et al., 2016]. Bayesian methods well accommodate challenges in hierarchical data [e.g.,

Gelman et al., 2015, Gelman and Hill, 2002]. Proposing Louvain in BEGA allows the

potential to detect hierarchical network structures in future studies. Third, compared to

the Louvain community detection technique, the walktrap algorithm [Pons et al., 2006], as

the default algorithm for the GLASSO-based EGA [Golino and Epskamp, 2017] method,

may encounter scalability challenges as it could become computationally expensive for the

walktrap technique in large or hierarchical networks [Lancichinetti et al., 2008].
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Bayesian Exploratory Graph Analysis (BEGA). This study proposes a

Bayesian network psychometric modeling framework for assessing factor structures, termed

as Bayesian Exploratory Graph Analysis (BEGA). Specifically, we develop two BEGA

models, which vary based on the way the Bayesian methods are used to determine the

structure of the conditional (in)dependence. The first model estimates the conditional

dependence structure using the analytical-based Bayesian approach with conjugate

Wishart prior, and is termed BEGA.A. The second model, BEGA.S, adopts a

sampling-based Bayesian approach to estimate a sparse network structure. In this study,

we establish the interval of values in which there is a 90% probability of containing the true

values, known as 90% credible intervals, in the posterior samples of BEGA.S to regulate

the degree of sparseness. Researchers may opt for a value range different from 90% to

account for their prior knowledge and beliefs about the network structure in practice. Both

BEGA.A and BEGA.S employ the Louvain community detection algorithm to assess the

undirected weighted network clusters. To address the issue of unidimensionality, we use the

abovementioned expand adjustment rule [Golino et al., 2020] by creating an auxiliary

dimension and adjusting unidimensionality through the auxiliary factor structure in

BEGA.A and BEGA.S.

Because the true factor structure is unknown in practical settings, the BEGA

techniques assess the factor structures by verifying the unidimensional structure first and

then proceeding to assess the multidimensionality. Specifically, after obtaining an empirical

dataset with a sample size of N , the techniques would simulate a dataset with the same

sample size of N as the empirical dataset with a hypothetical factor structure consisting of

four items and factor loadings of 0.7. This ensured that a non-unidimensional solution

would be obtained when estimating the network structures. The process involves

combining the simulated data with the actual data and using either an analytical-based or

sampling-based Bayesian estimation approach to estimate the network structure. The

sampling-based Bayesian estimation incorporates a designated specificity level and controls
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for sparseness. The output is a network graphical structure based on the partial correlation

matrix estimated using the Bayesian approaches. The Louvain community algorithm is

then applied to identify community partitions. If the returned number of factors is 2 or

less, the algorithm stops and records unidimensionality. If not, the process is repeated to

determine multidimensionality. The final estimated multidimensional structure is

calculated by subtracting one from the estimated dimension, which excludes the simulated

hypothetical dimension. See Figure 1 for a detailed description of the BEGA.A algorithm;

BEGA.S algorithm followed a similar procedure.

Monte Carlo Simulation Studies

We evaluated the performance of the two BEGA techniques in assessing the

multidimensional and unidimensional factor structures via two Monte Carlo simulation

studies. We further compared the proposed methods with two existing dimensionality

assessment techniques, the GLASSO-based network psychometric tool [EGA; Golino et al.,

2020] and parallel analysis using principal component analysis eigenvalues [PApca; Horn,

1965].

Simulation Study 1 - Assessing Multidimensionality

Simulation Design. In the simulation, we studied five potentially influential

variables (see Table 1), including number of factors, number of items, factor loadings,

interfactor correlations, and sample size. These manipulated conditions represented factor

analytic scenarios commonly seen in psychological studies [e.g., Comrey and Lee, 2013,

Garrido et al., 2016, Kane et al., 2005]. Specifically, the data generating factor model had

one, two, three, or five factors, representing uni- or multidimensionality factor designs.

where each factor had four, six, or eight items. All the models had three levels of factor

loadings that represented large (0.7), medium (0.55), and low (0.4) magnitude. Because

correlated factors likely affect the performance of dimensionality techniques [e.g.,

Garcia-Garzon et al., 2019, Garrido et al., 2016], we manipulated the interfactor
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correlations to range from orthogonal (0), mild (0.3), moderate (0.5), to high (0.7). Sample

sizes had three levels, representing small (250), medium (500), and large (1000) sampled

conditions.

We generated data from a common factor model following a similar procedure that

investigated the performance of the GLASSO-based network psychometric model,

Exploratory Graph Analysis [EGA; Golino et al., 2020]. Applying the data in a similar

setting allows us to compare results with established techniques including EGA and

parallel analysis [Horn, 1965]. In the data generation model, first, we computed the

reproduced population correlation matrix RR as

RR = ΛΦΛ′,

where Λ represents the factor loading matrix and Φ denotes the factor correlation matrix.

By placing unities in the diagonal of RR and raising the matrix to full rank, we obtained

the population correlation matrix as RP . We then applied Cholesky decomposition to the

population correlation matrix, such that

RP = U ′U ,

where U is the upper triangular matrix with real and positive diagonal entries. Finally, we

computed the sample data matrix of continuous variables as

X = ZU ,

where Z denotes the multivariate normal distribution for the continuous variables, with

rows equal to sample size and columns equal to number of items.

We applied four analytic methods to evaluate and compare the performance of the

dimensionality assessment techniques in the common factor model. The first two methods

were what we proposed in the study. The first method, called BEGA.A, used a Bayesian

analytic approach with a conjugate Wishart prior to estimate the graphical sructure. The
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method then used the Louvain community detection algorithm to extract communities.

The second method, called BEGA.S, used a sampling-based Bayesian approach to obtain

posterior samples. The technique set a 90% credible interval to control sparsity and used

the same Louvain procedure as BEGA.A to partition clusters. The remaining two methods

were established dimensionality reduction techniques for comparison purposes. Specifically,

we applied the GLASSO-based EGA technique [Golino et al., 2020] as the third method.

In the previous literature, Golino et al. [2020] compared EGA with other traditional

dimensionality assessment techniques including Kaiser’s eigenvalue-greater-than-one rule

[K1; Kaiser, 1960], parallel analysis using principal component analysis eigenvalues [PApca;

Horn, 1965], and parallel analysis using principal axis factoring [PApaf; Humphreys and

Ilgen, 2016]. Their studies found that PApca had the overall best comparable performance

to EGA over K1 and PApaf. Thus, we selected PApca as the fourth method and examined

its performance in the current study to align with prior work.

All data were generated and analyses were conducted in R [Team and Others, 2013].

We ran a total of 5,000 iterations for the MCMC chains in the two Bayesian methods. A

total of 3 × 3 × 3 × 4 × 3 = 324 conditions were studied for the multidimensional design.

Each simulated condition was replicated 500 times.

Evaluation Criteria. We evaluated the performance of the proposed Bayesian

methods to assess the number of factors and compared them with existing dimensionality

assessment techniques. We investigated the hit rate (HR), mean bias error (MBE), and

mean absolute error (MAE) of the estimated number of factors across simulation

replications. Let F denote the true number of factors in the population. Let F̂ denote the

estimated number of factors from the kth simulation replication. For F̂k = F , we counted it

as hit in the kth replication; conversely, for F̂k+1 ̸= F , we counted it as miss in the

(k + 1)th replication. The hit rate is defined as

HR = number of hit

number of hit + number of miss
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, which indicates the percentage of replications correctly recovering the true number of

factors from the data generation process. The hit rate ranges from 0 and 1 and can be seen

as a metric for assessing accuracy.

MBE measures the average of the differences between the estimated number of

factors and the true population factor. It is defined as

MBE = ΣK
k=1(F̂k − F )

K
.

MBE measures the bias of the predicted performance of the dimensionality assessment

technique. A positive MBE indicates that the model is biased towards overestimating the

true number of factors, while a negative MBE shows that the model underestimates the

true factors. An MBE of 0 indicates no bias in the estimation.

MAE captures the average of the absolute difference between the estimated and the

true number of factors. It is represented as

MAE = ΣK
k=1 | F̂k − F |

K
.

MAE is a measure of the average magnitude of the errors in estimating the factor

structure. While an MAE of 0 indicates no errors, higher values of MAE show greater

magnitude differences in estimation errors.

To further determine the impact of the manipulated factors and their interactions

on the performance of the proposed Bayesian methods, we conducted ANOVAs for each

method, where the hit rate was the dependent variable and the five manipulated data

conditions were the independent variables. We employed the partial eta squared statistic

(η2
p) as a metric to gauge the magnitude of the effect, with effect sizes of 0.01, 0.06, and

0.14 being categorized as small, medium, and large, respectively [Cohen, 1992].

Simulation Results. Table 3 summarized the HR, MBE, and MAE for the four

models. Table 4 presented the main and interaction effects from the ANOVAs. The

interaction effect with large or close to large effect sizes (i.e., η2
p ⩾ 0.13) was further

illustrated in Figure 2.
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The two Bayesian psychometric models (i.e., BEGA-A and BEGA-S) had

comparable performance to EGA and PApca in terms of high hit rate (HR), low mean

biased error (MBE), and low mean absolute error (MAE) across conditions examined in

the study. As shown in Table 3, the BEGA.A method had the second best HRs (0.82)

overall, which was lower than the EGA (0.84) method. Nevertheless, BEGA.A had the

smallest MBEs and MAEs out of all four methods. At the same time, the BEGA.S method

had the third-best HR (0.80), which was higher than the PApca method (0.78). The

BEGA.S also had smaller and better MBEs and MAEs than both the EGA and PApca

methods. The results additionally examined ANOVA interactions and effect size stabilities

across manipulated conditions (see Table 4). The sub-section below broke down the

performance by manipulated factors.

Factor loadings. The two Bayesian techniques performed better than EGA and

PApca with higher HRs and better MBE and MAE when the factor loadings were medium

to high. When the factor loading was low (0.40), EGA had the highest HR while BEGA.A

had the smallest MBE and MAE. Specifically, when the factor loading was high (λ = 0.7),

the two BEGA methods had the highest HRs (0.97 and 0.96, respectively), as compared to

EGA (0.91) and PApca (0.88). The two BEGA methods also had the lowest MAEs (0.03

and 0.04, respectively), as compared to EGA (0.23) and PApca (0.24), as well as the lowest

MBEs (-0.02 and 0.01, respectively), as compared to EGA (-0.23) and PApca (-0.24). As

the factor loading decreased to 0.55, EGA and BEGA.A had the highest HRs (0.90 and

0.88, respectively), followed by BEGA.S (0.86) and PApca (0.81). At the same time,

BEGA.A produced the smallest MAE (0.13), followed by BEGA.S (0.17), EGA (0.22), and

PApca (0.39); following a similar pattern, BEGA.A and BEGA.S had the smallest MBEs

(-0.07 and 0.07, respectively), as compared to EGA (-0.20) and PApca (-0.39). When the

factor loading decreased to 0.4, the four methods performed differently in terms of HRs,

MBEs, and MAEs. EGA had the highest HR, followed by PApca, BEGA.A, and BEGA.S.

BEGA.A had the lowest and best MBE and MAE, followed by EGA, BEGA.S, and PApca.
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Interfactor correlations. The two Bayesian techniques had apparently

outstanding performance in terms of high HRs and low MBEs and MAEs under high

interfactor correlation (0.7). EGA had the best performance when the interfactor

correlations were 0.5, while PApca performed the best as the interfactor correlation

decreased to 0.3 and lower. Specifically, when the interfactor correlations were 0.7,

BEGA.A and BEGA.S demonstrated clear higher HRs (0.77 and 0.74, respectively) than

EGA (0.68) and PApca (0.51), respectively. BEGA.A and BEGA.S also had better MBEs

and MAEs than EGA and PApca. When the interfactor correlations were 0.50, EGA had

the best HR, MBE and MAE, followed by BEGA.A. PApca had higher HR than BEGA.S

while the latter had better MBE and MAE than the former. As the interfactor correlations

decreased (0.3 or less), PApca had the best HR, MBE and MAE, followed by EGA,

BEGA.A, and BEGA.S.

Number of factors. In the presence of five factors, BEGA.S performed the best

with high HRs and low MBEs and MAEs. BEGA.A performed the best when there were 3

factors in the data, and EGA performed the best when having 2 factors in the data.

Specifically, with five factors, BEGA.S had a pronounced performance with the highest HR

amd the lowest MBE and MAE among the four techniques. EGA had the second best HR,

while BEGA.A had the second best MBE and MAE. The PApca technique performed the

least well in these three evaluation criteria under the condition. Having 3 factors in the

study, BEGA.A performed the best with high HRs and low MBEs and MAE, followed by

EGA, BEGA.S, and PApca, As the number of factors decreased to 2, EGA had the best

performance. When compared with PApca, BEGA.A had lower HR while MBE and MAE.

BEGA.S performed the least well under these conditions.

Variables per factor. With eight items per factor, while EGA had the highest

HR and smallest MAE, BEGA.A had the smallest MBE among the four methods. With six

items per factor, EGA had the highest HR while BEGA.A had the smallest MBE and

MAE. In the presence of four items per factor, BEGA.S performed the best with the
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highest HR and smallest MBE and MAE. Specifically, when each factor had eight items,

EGA had the highest HR, followed by PApca, BEGA.A, and BEGA.S. BEGA.A had the

smallest MBE, followed by EGA, PApca, and BEGA.S. With regards to MAE, EGA

performed the best, followed by BEGA.A, PApca, and BEGA.S. When each factor had six

items, EGA had better HR (0.87) than BEGA.A (0.86), while worse MBE (-0.18) than

BEGA.A (-0.08) and higher MAE (0.26) than BEGA.A (0.16). As the items decreased to

four per factor, the two Bayesian techniques performed the best in terms of HR, MBE, and

MAE. BEGA.S had the best HR (0.83), followed by BEGA.A (0.80), EGA (0.74), PApca

(0.65); BEGA.S also had the smallest MAE (0.19), followed by BEGA.A (0.26), EGA

(0.52), PApca (0.65), as well as the best MBE (-0.06), followed by BEGA.A (-0.25), EGA

(-0.49), and PApca (-0.71).

Sample size. When the sample sizes were medium to large (i.e., N ≥ 500), the

two BEGA methods outperformed in terms of the best HRs, MBEs and MAEs.

Specifically, when N = 1000, the HRs for BEGA.A., BEGA.S, EGA, and PApca were 0.94,

0.95, 0.88, and 0.86, respectively; the MBEs for the four methods were -0.10, 0.13, -0.25,

and -0.44, respectively; and the MAEs for BEGA.A., BEGA.S, EGA, and PApca were

monotone increasing, as 0.21, 0.26, 0.31, and 0.45, respectively. A similar pattern appeared

under the medium sample sized condition (i.e., N=500). BEGA.A and BEGA.S produced

better or identical HRs than EGA and PApca, and smaller MBEs and MAEs than the

other two techniques. As the sample size decreased to 250, EGA and PApca had higher

HRs than BEGA.A, while BEGA.A had the best MBE and MAE. BEGA.S did not

perform well under these conditions.

ANOVAs. We further conducted ANOVAs to assess the impact of the

manipulated variables and their interactions. In the ANOVAs, the HR was the dependent

variable and the five manipulated data conditions were the independent variables. The

ANOVAs estimated up to four-way interactions. The effect sizes for the ANOVAs were

presented in Table 4. Of note, BEGA.A was the only method that did not have an
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interaction with a medium or up effect size (η2
p ⩾ 0.06), and BEGA.A and BEGA.S were

the only techniques that did not have interactions with a large effect size (η2
p ⩾ 0.14). In

terms of the main effects, PApca had the highest effect sizes, showing that the accuracy of

PApca was largely affected by the variability of factor loadings, interfactor correlations,

sample size, number of factors, and number of variables per factor.

The two-way interaction VF (variables per factor) * FC (interfactor correlations)

yielded close to large effect sizes for EGA (η2
p.EGA = 0.14) and PApca (η2

p.P Apca = 0.13),

respectively, which demonstrated the variabilities of the EGA and PApca methods in

producing accuracies. We plotted this two-way interaction which demonstrated large effect

sizes (see Figure 2) to further investigate and compare the performances of the four

methods. Under the four variable per factor condition, the two Bayesian techniques had

relatively stable HRs across interfactor correlation conditions, whereas the performance of

EGA and particularly PApca varied largely across varying interfactor correlations.

Specifically, when the factors were uncorrelated, PApca had the highest HR (≈ 0.98), with

BEGA.A, BEGA.S and EGA having slightly lower and similar HRs (≈ 0.92). The four

methods had similar HRs (≈ 0.90) when the interfactor correlation was 0.3. As the

interfactor correlations increased to 0.5, PApca had a large drop in HR to around 0.7.

When the interfactor correlations climbed to 0.7, PApca had a huge plummet in HR

(≈ 0.30), and so did EGA (≈ 0.40), while the two Bayesian approaches remained relatively

high in accuracy (≈ between 0.71 and 0.76). Similar patterns were seen when each factor

had 6 items. When there were 8 items per factor, BEGA.A, BEGA.S, and EGA had stable

performances across varying interfactor correlations, while PApca had sharp drop in HR

when the interfactor correlation increased.

In sum, the results showed that across the studied conditions, EGA and BEGA.A

had the highest HRs (0.88 and 0.87, respectively), followed by BEGA.S (0.83) and PApca

(0.83); BEGA.A had the lowest and best MBE (-0.08), followed by BEGA.S (0.13), EGA

(-0.18), and PApca (-0.33); and BEGA.A had the lowest and best MAE (0.16), followed by
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BEGA.S (0.23), EGA (0.24), and PApca (0.34). Furthermore, across manipulated data

conditions and their interactions, the BEGA.A method was the least affected by varying

levels of data conditions both in the main and interaction effects, followed by BEGA.S and

EGA. The performance of PApca was largely affected by varying levels of manipulated

data conditions.

Simulation Study 2 - Assessing Unidimensionality

Unidimensionality remains a challenge in network psychometric models. The

BEGA.A and BEGA.S models developed in the study applied the expand

unidimensionality adjustment rule [Golino et al., 2020]. We carried out a second simulation

study to assess the effectiveness of the expand adjustment rule proposed to the current two

Bayesian models.

Data were generated using a similar design as in the multdimensional setting (see

Table 1), except that the true data generating process was from a one-factor (i.e.,

unidimensional) model. A total of 3 × 3 × 4 × 3 = 108 conditions were studied for the

unidimensional design and each condition was replicated 500 times. BEGA.A and BEGA.S

started with the expand adjustment rule to verify whether there was a unidimensional

factor structure. After verifying the unidimesionality, the techniques proceeded to check for

multidimensionality in the absence of the unidimensionality (See Figure 1).

Table 3 presented a summary of the HR, MBE, and MAE values for the four

techniques, which were defined in a similar way as in the multidimensional setting. The

findings showed that BEGA.A and BEGA.S demonstrated satisfactory performance when

assessing unidimensionality. In comparison to the other two existing techniques, PApca

demonstrated outstanding performance, achieving almost perfect HR (99.92%). Following

closely behind were BEGA.A (99.44%) and EGA (99.38%). PApca also exhibited near-zero

values for MBE and MAE, with BEGA.A and EGA closely following behind. Among the

four methods, BEGA.S had the lowest performance, with an HR of 92.67% and MBE and
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MAE values of 0.11, although these results were still considered quite favorable.

Discussion

This study developed two Bayesian network psychmetric models to assess the

dimensional structures in the data. The first model, BEGA.A computed the Gaussian

graphical structures analytically from a conjugate G-Wishart prior distribution [Kubokawa

and Srivastava, 2008] and used the Louvain community detection algorithm [Blondel et al.,

2008] to partition the nodes and assess dimensions. The second model, BEGA.S, adopted a

sampling-based Bayesian approach [Williams, 2021] while controlling for the graphical

structure’s sparsity and then applied the Louvain community detection algorithm [Blondel

et al., 2008] to detect the dimensionality. Both approaches applied an expand adjustment

rule [Golino et al., 2020] to evaluate potential unidimensional factor structure in the model.

We compared the performance of the proposed two Bayesian techniques (i.e., BEGA.A and

BEGA.S) with the GLASSO-based network psychometric model (i.e., EGA) and the

eigenvalue-based parallel analysis (i.e., PApca) via two Monte Carlo simulation studies.

The study found that when estimating multdimensional structures, EGA had the

highest HR, followed by BEGA.A, BEGA.S, and PApca. BEGA.A had the smallest and

most accurate MBE and MAE, followed by BEGA.S, EGA, and PApca. Although

BEGA.A approach had a slightly lower overall HR than EGA by 2.38%, it had a

significantly better MBE by 32.26% and a better MAE by 60%. Given that the small

difference in HR did not outweigh the large difference in MBE and MAE, BEGA.A had the

best trade-off between accuracy and mean biased/absolute errors. BEGA.S had a lower

overall accuracy but also lower mean biased and mean absolute errors than EGA. Further,

BEGA.S had better accuracy and smaller errors than PApca. Both Bayesian techniques

had more stable performance across the main and interaction effects of the data conditions

than EGA and PApca. When considering the different factors studied, BEGA.A

demonstrated the best balance among the four techniques. This was observed when
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studying 3 or 5 factors, 4 or 6 items per factor, medium to high factor loadings (0.55 or

higher), high factor correlations (0.70), and medium to large sample size (500 or more). On

the other hand, EGA performed the best when dealing with 2 factors, 8 items per factor,

small factor loadings (0.40), or medium factor correlations (0.50), and PApca performed

the best when the factor correlations were small (0.30 or less). When the sample size was

250, EGA had the highest HR, while BEGA.A had the best MBE and MAE. In terms of

estimating the unidimensional structure, the PApca technique yielded the highest HR, as

well as the best MBE, and MAE. The tied EGA and BEGA.A approaches followed closely,

and then BEGA.S. In sum, the study recommends using BEGA.A as an alternative tool for

assessing dimensionalities and advocates the usefullness of BEGA.S as a valuable alternate

technique. The BEGA modeling framework was not intended to replace existing

dimensionality detection techniques such as EGA or parallel analysis but provided another

view and opportunity to examine the data.

Using Bayesian methods to assess dimensionality offers certain advantages. Instead

of obtaining a fixed point parameter estimate, BEGA estimates the posterior probabilities

of graphical structures to evaluate the conditional dependence relationships between

variables. The estimated distributional information of the structures provides additional

computing information and captures uncertainty, which will ultimately facilitate

constructing intervals and conducting statistical inferences. The Bayesian techniques also

allow potentials to control for the sparsity level of the graphical structure, which is a

unique gain that the current GLASSO-based network psychmetric models do not possess.

Unlike EGA that regularizes sparsity during the regularization process in GLASSO, the

Bayesian methods do not produce a sparse matrix for the graphical structures directly, but

need rules to control sparsity. Establishing rules that correspond to an appropriate level of

sparsity will benefit the estimation of the graphical structures. We conducted preliminary

studies and found an improved accuracy in the BEGA techniques when tailoring the

sparsity level to data specific conditions. We think this also explained why BEGA-S
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outperformed BEGA-A in certain conditions as the former allows the potential to control

sparsity of the graphical structure. Consequently, with an appropriate decision rule,

BEGA.S is more likely to detect the true dimensions.

Substantively, we see BEGA methods useful for both theoretical and applied

purposes. With respect to theory, the psychological literature is replete with debates

regarding the factor structure of scores where replicable good fit for a multidimensional

structure is difficult to find through traditional confirmatory techniques. For example,

different models have been proposed for the structure of affect scores beyond a

two-dimensional positive-negative structure. Although the addition of an arousal

dimension (i.e., high versus low activation potential) has garnered the most empirical

attention, other dimensions (e.g., responsibility/control, certainty, situational-control,

depth of experience, and regulatory focus) have been offered [Baas et al., 2008, Smith and

Ellsworth, 1985]. BEGA methods hold considerable promise here and in similar cases

where strong factor correlations are likely in attempts that go beyond a simple,

two-dimensional structure [e.g., Jorgensen et al., 2021]. In general, in literatures where

there is a proliferation of theory, constructs, and measures, such as leadership [Antonakis

and House, 2014], career proactivity [Jiang et al., 2023], personality [Hough et al., 2015],

we see potential in BEGA methods to contribute to theoretical debates surrounding the

multidimensional nature of phenomena.

We also see considerable promise for BEGA methods to be leveraged for the

practical purpose of mapping a complex outcome space onto potential test batteries to

optimize prediction. A good case in point is the development and validation of test

batteries for predicting work performance and hiring employees. Working from a clear

conceptualization and operationalization of work performance is critical to the development

and weighting of component predictor test scores. It is not uncommon for a job analysis to

point to 20 or more, if not dozens of, work performance components. BEGA methods could

be leveraged to reduce the components to a theoretically meaningful and optimally
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weighted set of criterion dimensions that guide the selection and weighting of predictor

tests. In this way, BEGA methods could support traditional criterion-related validation

studies as well as synthetic validation efforts [Johnson and Carter, 2010]. In the same vein

as the preceding paragraph, we see potential in BEGA methods for addressing debates in

the scholarly literature regarding the dimensionality of work performance [Carpenter et al.,

2021, MURPHY and SHIARELLA, 1997, Rotundo, 2002].

The study had a few additional future directions to explore. First, the current study

for BEGA.S predetermined a value range of 90% as the credible interval, which reflected

the probability of the true value falling into the range. However, this value range was not

based on prior knowledge and could potentially be updated by researchers to improve the

performance of the BEGA.S method. By adjusting the probability range, researchers can

change the sparseness or density of the network, which could lead to better performance of

BEGA.S. Second, in the current study, noninformative priors were used in the Bayesian

estimation, which may explain why the Bayesian approach did not show much improvement

in small sample size conditions. The use of informative priors in future studies could

potentially help to improve the performance in such conditions by incorporating previous

information as additional data [e.g., Serang et al., 2014, Shi and Tong, 2017, Zhang et al.,

2007]. The performance of the proposed Bayesian network psychometric framework could

be enhanced by developing and incorporating informative priors.

Note that the Louvain and fast-greedy community detection algorithms reached a

similar accuracy when detecting the communities from the BGGM. We proposed the

Louvain algorithm for the BEGA approaches in the current study mainly due to Louvain’s

ability to accommodate hierarchical structures. It may not be obvious in the current

simulation setup where all the data are from a single level factor structure, however, the

BEGA approach with the Louvain algorithm allows potential to address the hierarchical

structures such as in the bifactor model or the hierarchical factor models. We showed

evidence that the expand adjustment rule performed very well in detecting the
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unidimensional structures in this study. The Louvain algorithm with an adjusted

hyperparameter (resolution=0.95) performs optimally and should be considered in future

studies [Christensen, 2022]. Adjusting for unidimensionality remains open for future

directions.

In conclusion, this study developed and systematically evaluated two approaches

based on Bayesian network psychometric models, BEGA.A and BEGA.S, for the

dimensionality assessment of psychological data. The results indicate that both approaches

show promise as valuable alternative techniques to existing methods such as EGA and

parallel analysis. Specifically, BEGA.A demonstrated the best trade-off between accuracy

and estimation errors, while BEGA.S exhibited improved performance when controlling for

sparsity of the graphical structure. The use of Bayesian techniques offers several

advantages, such as capturing uncertainty, facilitating statistical inference, and providing

opportunities to control for sparsity levels. Moreover, the Louvain algorithm employed in

the BEGA approaches offers potential for addressing hierarchical structures. Future

research should focus on refining aspects of the BEGA.S method, such as adjusting the

credible interval value range, incorporating informative priors, and further exploring

unidimensionality adjustments. By doing so, the proposed Bayesian network psychometric

framework can be further enhanced, offering researchers additional tools to analyze and

understand complex data structures.
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Table 1

Simulation Design

Influential Factors # of Factor Levels Levels

Number of factors F 41 1, 2, 3, 51

Number of Items per Factor I 3 4, 6, 8

Factor Loadings λ 3 0.4, 0.55, 0.7

Interfactor Correlations r 4 0, 0.3, 0.5, 0.7

Sample Size N 3 250, 500, 1000
Note:
1Includes the multidimensional and unidimensional designs
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Table 3

HR, MBE, and MAE for BEGA.A, BEGA.S, EGA, and PApca in Unidimensionality Assessment

Factor loading Variables per factor Sample size Total

Method 0.40 0.55 0.70 4 6 8 250 500 1000

Hit Rate (HR)

PApca 99.76% 100% 100% 99.80% 99.96% 100% 99.78% 99.98% 100% 99.92%

EGA 98.12% 100% 100% 99.84% 99.40% 98.89% 98.46% 99.67% 100% 99.38%

BEGA.A 98.84% 99.60% 99.87% 99.98% 99.87% 98.47% 98.31% 100% 100% 99.44%

BEGA.S 85.22% 95.04% 97.76% 98.24% 96.11% 8367% 79.59% 98.42% 100% 92.67%

Mean biased error (MBE)

PApca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EGA 0.02 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.01

BEGA.A 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.01

BEGA.S 0.25 0.07 0.03 0.02 0.06 0.26 0.32 0.02 0.00 0.11

Mean absolute error (MAE)

PApca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EGA 0.02 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.01

BEGA.A 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.01

BEGA.S 0.25 0.07 0.03 0.02 0.06 0.26 0.32 0.02 0.00 0.11
Note: PApca = parallel analysis with principal component analysis eigenvalues; EGA= exploratory graph analysis; BEGA.A

= analytically-based Bayesian exploratory graph analysis; BEGA.S = sampling-based Bayesian exploratory graph analysis



BAYESIAN EXPLORATORY GRAPH ANALYSIS FOR DIMENSIONALITY
ASSESSMENT 41

Table 4

ANOVA Effect Size for the Hit Rate Dependent Variable

Main Effect PApca EGA BEGA.A BEGA.S Interaction Effect PApca EGA BEGA.A BEGA.S

FL 0.18 0.17 0.24 0.25 FL:VF:FC 0.08 0.02 0.01 0

VF 0.16 0.07 0.01 0.02 FL:VF:F 0 0 0.01 0.01

FC 0.6 0.28 0.07 0.06 FL:VF:N 0 0.01 0.01 0.02

F 0.12 0.06 0.1 0 FL:FC:F 0.03 0.01 0.01 0

N 0.1 0.06 0.15 0.22 FL:FC:N 0.04 0.01 0.03 0.03

Interaction Effect PApca EGA BEGA.A BEGA.S FL:F:N 0 0 0.02 0.02

FL:VF 0 0 0.02 0 VF:FC:F 0.03 0 0 0

FL:FC 0.1 0.02 0.04 0.02 VF:FC:N 0.03 0 0 0

FL:F 0.01 0.03 0.03 0 VF:F:N 0 0 0.01 0.01

FL:N 0.01 0.09 0.04 0.08 FC:F:N 0.01 0 0 0

VF:FC 0.13 0.14 0.01 0 FL:VF:FC:F 0.02 0 0.01 0

VF:F 0 0 0.01 0.03 FL:VF:FC:N 0.03 0 0 0.01

VF:N 0 0 0.02 0.05 FL:VF:F:N 0.01 0 0.01 0.01

FC:F 0.08 0.03 0 0 FL:FC:F:N 0.02 0.01 0.02 0.01

FC:N 0.05 0.01 0 0 VF:FC:F:N 0.01 0 0 0

F:N 0.01 0 0.03 0 FL:VF:FC:F:N 0.05 0 0 0
Note: FL = factor loading; VF = variables per factor; FC = factor correlation; F = number of factors: N = sample size; PApca = parallel

analysis with principal componente analysis eigenvalues; EGA = exploratory graph analysis; BEGA.A = analytically-based bayesian exploratory

graph analysis; BEGA.S = sample-based bayesian exploratory graph analysis. Cell values are partial eta squated effect size estimates. The

unidimensional condition was excluded from the analyses due to not crossing with the factor correlation variable.



Algorithm 1 BEGA.A for Assessing Dimensionality

Require: An empirical dataset with n observations and p variables.
1: function CheckUnidimensionality
2: Generate a unidimensional structure simdata with four items and factor

loadings of 0.70.
3: Column bind simdata with the empirical data empdata into a new data

frame expanddata.
4: Specify a conjugate Wishart prior and apply the analytical-based

Bayesian method to estimate the posterior distribution of the precision ma-
trix for expanddata.

5: Obtain the estimated partial correlation matrix (i.e., BGGM) from the
posterior mean.

6: Create a network graphical structure of the estimated partial correlation
matrix.

7: Identify the clusters of the graphical structures using the Louvain com-
munity detection algorithm.

8: Return the number of factors as the number of communities estimated
by the Louvain algorithm.

9: if the returned number of factors ≤ 2 then
10: Return the number of factors = 1.
11: Unidimensionality is detected and recorded.
12: end if
13: end function
14: function CheckMultidimensionality
15: if the returned number of factors > 2 then
16: Specify a conjugate Wishart prior and apply the analytical-based

Bayesian method to estimate the posterior distribution of the precision ma-
trix for the original empirical data empdata.

17: Obtain the estimated partial correlation matrix (i.e., BGGM) for
empdata from the posterior mean.

18: Create a network graphical structure of the estimated partial corre-
lation matrix.

19: Identify the clusters of the graphical structures using the Louvain
community detection algorithm.

20: Return the number of factors as the estimated number of factors in
the algorithm minus 1.

21: Multidimensionality is detected and recorded.
22: end if
23: end function

Figure 1

Algorithm for Analytical-based BEGA (BEGA.A)
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Figure 2

ANOVA Interactions for BEGA.A, BEGA.S, EGA, and PApca (η2
p.EGA = 0.14,

η2
p.P CA = 0.13)
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