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Overview | Week 12

Goals for the Week

Understand (intensive) longitudinal measurement

Learn how to use and apply dynamic exploratory graph analysis

Uncover how to detect clusters of people in dynamic data
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Dynamic Exploratory Graph Analysis

Time series is back!
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Dynamic Exploratory Graph Analysis

Recall: Types
cross-sectional: measurement at a single time point (a
cross-section in time)

panel: measurement at multiple single time points (usually
equally spaced in time)

longitudinal: multiple measurements across time (usually
much more than panel) that can be on the order of minutes,
hours, days, weeks, months, or years
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Dynamic Exploratory Graph Analysis

longitudinal: multiple measurements across time (usually much
more than panel) that can be on the order of minutes, hours, days,
weeks, months, or years

Minutes, hours, days: “intensive”

Weeks, months, years: “standard”

Intensive longitudinal data is most often used to capture dynamics
across a short time window for processes that tend to have more
rapid shifts from moment-to-moment

For this reason, often referred to as ecological momentary assessment
(EMA)
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Recall our example of emotions during the pandemic. . .
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Dynamic Exploratory Graph Analysis

What was the design?

intensive longitudinal: 4 times per day for 2 weeks

What are the benefits?

Real-time thoughts and feelings (no recollection)

Captures dynamics (variability within and between people)

within-person: repeated measurements of an individual person

between-person: measurements collapsed across people
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Dynamic Exploratory Graph Analysis | Variability

Variability
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Dynamic Exploratory Graph Analysis | Variability

Capture dynamics of variables

Interested in. . .

1 how variables change together
2 whether variables “synchronize”
3 whether individuals differ from one another and/or the sample
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Dynamic Exploratory Graph Analysis | Variability

What models do we know that can capture variability in time series?

TSLM: regression on an outcome

Autoregression (AR): lagged outcome regressed on itself

Vector autoregression (VAR): lagged variables regressed on each
other

(Generalized) ARCH: volatility of time series

Do any of these capture “how variables change together”?

Vector autoregression

common technique to look at how variables are changing
together across time in many different fields
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What models do we know that can capture variability in time series?
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Dynamic Exploratory Graph Analysis | Variability

Time Considerations

What is variability in time series data?
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Time Considerations

What is variability in time series data?
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Dynamic Exploratory Graph Analysis | Variability

Time Considerations

These time series have the same variance (SD = 3.742)!
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Dynamic Exploratory Graph Analysis | Variability

Time Considerations

Variance of a time series does not capture its underlying
dynamics

This issue limits our ability to interpret associations between
variables in our data

r =
∑

(x − x̄)(y − ȳ)√∑
(x − x̄)2 ∑

(y − ȳ)2

s2 =
∑

(y − ȳ)2

n − 1
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Dynamic Exploratory Graph Analysis | Variability

Time Considerations

Correlations with time:
red = 0.949
blue = 0

Correlations with each other: 0.167
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Dynamic Exploratory Graph Analysis | Variability

Time Considerations

How can we capture the variability of the time series?
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Dynamic Exploratory Graph Analysis | Variability

Time Considerations

Differential equations: slopes (tangent lines) of curve

First-order derivative: velocity (rate of change)

Second-order derivative: acceleration (rate of rate of change)
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Dynamic Exploratory Graph Analysis | GLLA

Generalized Local Linear Approximation
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Dynamic Exploratory Graph Analysis | GLLA

Integrals are computationally intensive

Approximations are simpler, faster, and nearly as accurate
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Generalized Local Linear Approximation
1 Create a time delay embedding

2 Compute average differences between values

3 Repeat for each sequence in embedding

DS-5740 Advanced Statistics Dynamic Exploratory Graph Analysis



Dynamic Exploratory Graph Analysis | GLLA

Time Delay Embedding
# Create time delay embedding
embedding <- Embed(

x = df$y[df$value == "squared"], # univariate time series
E = 3, # number of embedding columns
tau = 1 # lag

)

E1 E2 E3

9 4 1
4 1 0
1 0 1
0 1 4
1 4 9
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Dynamic Exploratory Graph Analysis | GLLA

Derivatives
# Compute derivatives
derivatives <- glla(

x = df$y[df$value == "squared"], # univariate time series
n.embed = 3, # number of embeddings
tau = 1, # lag
delta = 1, # time between observations
order = 1 # order of derivative

)

Time x y Moving Average First Derivative

1 -3 9 NA NA
2 -2 4 4.67 -4
3 -1 1 1.67 -2
4 0 0 0.67 0
5 1 1 1.67 2
6 2 4 4.67 4
7 3 9 NA NA
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Dynamic Exploratory Graph Analysis | GLLA

Our Example

These time series do not the same variance!
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Standard deviations
red = 0.837
blue = 3.162
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Dynamic Exploratory Graph Analysis | GLLA

Our Example

Original relationship with time:
red = 0.949
blue = 0

Derivative relationship with time:
red = 0.945
blue = 1

Correlations with each other
Original = 0.167
Derivative = 0.945
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What happened?
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Dynamic Exploratory Graph Analysis | GLLA

Original Time Series

standard deviation: does not capture dynamics – it captures
deviations from mean (time does not matter)

correlation: only captures linear relationships

Derivative Time Series

standard deviation: captures variability in how a variable
changes over time (i.e., its dynamics)

correlation: captures linear and nonlinear relationships
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Dynamic Exploratory Graph Analysis | GLLA

Interpretations

Variance
low: small range of velocities (first-order derivatives) – there is
little change over time

high: large range of velocities – there is lots of variability over
time

Mean
positive (> 0): generally increasing trend over time (i.e.,
changes tend to be more upward than downward)

negative (< 0): generally decreasing trend over time (i.e.,
changes tend to be more downward than upward)

zero: increases and decreases cancel one another out
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Dynamic Exploratory Graph Analysis
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1 Compute Generalized Local Linear Approximation (GLLA) for
each variable for each person’s time series

2 Estimate EBICglasso across all people (stack each person’s
derivatives) and each individual person

3 Apply a community detection algorithm to the “population”
network (all people) and “individual” networks (each person)
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Empirical Example

n = 122 completed the BFI-2

Beeped 4 times a day for two weeks

Completed around 10-15 Big Five Inventory 2 items at each
beep

Missing responses to non-queried items were imputed
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Our Questions

Do variables cluster into dimensions? Do we find the Big Five?

Do variables cluster into the same dimensions for each person?

Do people cluster into sub-groups or types?
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Do variables cluster into dimensions? Do we find the Big Five?

Load {EGAnet} and data
# Load {EGAnet}
library(EGAnet)

# Load data
load("../data/esm_data.RData")

Length of each time series
# Length of each time series
table(esm_data$ID)
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Do variables cluster into dimensions? Do we find the Big Five?
# Estimate Dynamic EGA
bfi2_dynamic <- dynEGA(

data = esm_data, # long format dataset
n.embed = 4, # number of GLLA embeddings (4 beeps a day)
delta = 1, # lag = 1
level = c("population", "individual"),
# population and individual networks
id = 1, # first column
use.derivatives = 1, # first order derivatives
model = "glasso", # estimate Gaussian graphical model
algorithm = "louvain" # community detection algorithm

)
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Dynamic Exploratory Graph Analysis
# Plot population network
plot(bfi2_dynamic$dynEGA$population)
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Dynamic Exploratory Graph Analysis

Do variables cluster into dimensions? Do we find the Big Five?

Openness to Experience (community 6): partially replicated (O1,
O3-O8)

Conscientiousness (community 2): partially replicated (C1-C8, C11,
C12)

Extraversion (community 5): partially replicated (E1-E4, E9, E10, E12)

Agreeableness (communities 4 and 7): split between two
communities

Neuroticism (community 1): perfectly replicated (N1–N12)

Mixed (community 3): extraversion and openness to experience
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Dynamic Exploratory Graph Analysis

Quantifying Similarity of Communities

Normalized mutual information

NMI(Ctheo,Cest) = 2 × I(Ctheo,Cest)
[H(Ctheo) + H(Cest)]

entropy: H(X) = −
∑

x∈X p(x) log p(x)

mutual information: I(X, Y) = H(X, Y) − H(X|Y) − H(Y|X)
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Dynamic Exploratory Graph Analysis

# Set empirical memberships
empirical <- bfi2_dynamic$dynEGA$population$wc
names(empirical) <- gsub(".Ord1", "", names(empirical))

# Set theoretical memberships
theoretical <- empirical
theoretical[grep("O", names(theoretical))] <- 1
theoretical[grep("C", names(theoretical))] <- 2
theoretical[grep("E", names(theoretical))] <- 3
theoretical[grep("A", names(theoretical))] <- 4
theoretical[grep("N", names(theoretical))] <- 5

# NMI
igraph::compare(empirical, theoretical, method = "nmi")

[1] 0.755034

0 = independent community solutions

1 = perfect match

Is our value good?

. . . it depends
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Dynamic Exploratory Graph Analysis

Do variables cluster into the same dimensions for each person?
# Summary for individuals
summary(bfi2_dynamic$dynEGA$individual)

Individual

Model: GLASSO (EBIC)
Correlations: auto
Unidimensional Method: Louvain

----

Number of cases: 122

Median dimensions: 7

5 6 7 8
Frequency: 6 54 43 19
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Dynamic Exploratory Graph Analysis

Do variables cluster into the same dimensions for each person?

NMI Descriptives

mean = 0.324

standard deviation = 0.071

range = 0.098, 0.618

Doesn’t seem like it. . .
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Dynamic Exploratory Graph Analysis
What about each person and the Big Five?
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Dynamic Exploratory Graph Analysis

What about each person and the Big Five?

NMI Descriptives

mean = 0.408

standard deviation = 0.101

range = 0.181, 0.65

Doesn’t seem like it. . .
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Dynamic Exploratory Graph Analysis
What about each person and the population structure?

0

5

10

15

20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Normalized Mutual Information

N
um

be
r 

of
 P

eo
pl

e

NMI with the Population Structure

DS-5740 Advanced Statistics Dynamic Exploratory Graph Analysis



Dynamic Exploratory Graph Analysis

What about each person and the Big Five?

NMI Descriptives

mean = 0.47

standard deviation = 0.087

range = 0.251, 0.754

Maybe one person? But not really. . .
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Dynamic Exploratory Graph Analysis

Do people cluster into sub-groups or types?

Can people be grouped based on similar network (not
necessarily community) structures?

Provides insights into types of people that might exist in our
sample

Goal: Identify meaningful groups that we can compare and
potentially use as “natural” differences in an experiment

May have implications for interventions or (clinical) treatments
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Dynamic Exploratory Graph Analysis

Do people cluster into sub-groups or types?

(Quantum) Jensen-Shannon Distance: computes distance or
similarity between two network structures

After hierarchical clustering can be applied to identify groups
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(Quantum) Jensen-Shannon Distance

Starts with computing Von Neumann entropy of network

hA = −Tr[LG log2 LG]

Tr = trace (sum of the diagonal)

LG = combinatorial Laplacian matrix: c × (D − A)
A = network
D = sum of each variable’s connection in the network on a
diagonal matrix
c = 1∑

A
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Dynamic Exploratory Graph Analysis

(Quantum) Jensen-Shannon Distance

Starts with computing Von Neumann entropy of network

hA = −
N∑
i=1

λi log2(λi)

λi = eigenvalues of LG
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Dynamic Exploratory Graph Analysis

(Quantum) Jensen-Shannon Distance

Starts with computing Von Neumann entropy of network

DJS(ρ||σ) = h(µ) − 1
2[h(ρ) + h(σ)]

h = Von Neumann entropy of combinatorial Laplacian matrix

µ = average combinatorial Laplacian matrix of network ρ and σ

√
DJS(ρ||σ) = (Quantum) Jensen-Shannon Distance

Bounded between 0 and 1
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Dynamic Exploratory Graph Analysis

Hierarchical Clustering
1 Uses agglomerative or “bottom-up” method on the

Jensen-Shannon Distance

2 Applies the complete linkage function

maxi,j d(Xi, Yj)

3 Join observations/clusters that are most similar of all possible
distance values (i.e., lowest value)

4 Repeat 2. and 3. until there is one cluster
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Dynamic Exploratory Graph Analysis

Hierarchical Clustering

Through this process, a dendrogram or tree-like structure is
created with “roots” and “branches”

A “cut” can be made on these branches to obtain the clusters
(from 1 to n − 1)

A criterion measure is computed for each cut and the cut that
has the best criterion is selected

In the present application, modularity is used
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Information Theory Clustering
# Compute clusters
bfi2_clusters <- infoCluster(bfi2_dynamic)

# Summary
summary(bfi2_clusters)
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Dynamic Exploratory Graph Analysis

Number of cases: 122
Number of clusters: 122

01 02 05 06 07 08 09 10 100 102 103 104 105 106 107
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

108 11 110 111 112 113 116 118 119 12 121 122 123 126 127
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
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91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
61 63 66 67 68 70 73 74 77 78 84 86 87 88 93
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96 99

121 122
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Dynamic Exploratory Graph Analysis
not our results – example when there is multiple clusters
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On Single Clusters

Our found a single cluster based on modularity

Single clusters are tricky because if all values are relatively
equidistant then a single cluster will be returned

However, if all clusters are relatively equidistant, then it’s also
possible that the clustering is random

Therefore, we need a statistical test against random to determine
whether we have a single cluster or no clusters
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Single or Random Cluster Approach

1 Generate random networks by shuffling edges randomly in
each individual’s network such that the same number of edges
exist but they are in a different arrangement

2 Compute JSD between each individual’s random network

3 Compute a paired samples t-test using the paired values of
actual JSD and random JSD
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4 Interpret the test (actual - random;
$single.cluster.test$t.test):

a. Positive values: the distances between the actual networks are
greater than the random networks suggesting no clusters

b. Negative values: the distances between the actual networks are less
than the random networks suggesting a single cluster

c. p < 0.05 should be true and padaptive < 0.05 should also be true

Cohen’s d
small (0.20)
moderate (0.50)
large (0.80)
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Our Single Cluster Test
# t-test
bfi2_clusters$single.cluster.test$t.test

Paired t-test

data: jsd_matrix[upper_indices] and jsd_random_matrix[upper_indices]
t = 11.481, df = 1769, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
0.02844997 0.04017296

sample estimates:
mean difference

0.03431147
# Adaptive alpha
bfi2_clusters$single.cluster.test$adaptive.p.value$adapt.a

[1] 0.0001189165
# Cohen's d
bfi2_clusters$single.cluster.test$d

[1] 0.2728912
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Takeaways

We didn’t find any clusters!

This result suggests that each person in our sample is unique

What implications does that hold for measurement?
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