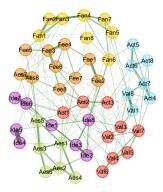


PSY-GS 8875 Behavioral Data Science



Overview: Week 13

Overview | Week 13

Readings (Optional)

- Christensen and Golino 2021 bootEGA
- Christensen et al. 2023 UVA
- Christensen and Golino 2021 loadings
- Jamison et al. 2022
- Jimenez et al. 2023
- Samo et al. 2023

Overview | Week 13

- Stability of communities and items
- Local dependence detection
- Network loadings
- Metric invariance
- Hierarchical dimensions

Stability of Communities and Items

reliability: are your measurements consistent (i.e., can they be repeated)?

- internal consistency: whether your items are interrelated that is, moderate ($r \ge 0.30$ to strongly correlated $r \ge 0.50$)
- **test-retest**: true "reliability" whether your items can be repeated and are consistent each time you measure them

Internal Consistency

$$\label{eq:cronbach} \text{Cronbach's } \alpha = \frac{k}{k-1} \bigg(\frac{\sum_{i=1}^k \sigma_{x_i}^2}{\sigma_x} \bigg),$$

where

• k = number of items

•
$$\sigma_{x_i}^2 = \text{variance of item } i$$

 $\bullet \ \sigma_x = {\rm variance}$ associated with sum total of items $x = \sum_{i=1}^k x_i$

♀ For more internal consistency measures, see McNeish (2018)

Homogeneity

- Whether a set of items reflect a single underlying construct
- Often implicitly assumed and not usually tested (e.g., unidimensionality)

What seems stronger to be a stronger statement?

- Internal consistency: items are interrelated
- bomogeneity: items reflect a single underlying construct

What seems stronger to be a stronger statement?

- Internal consistency: items are interrelated
- bomogeneity: items reflect a single underlying construct

Both psychometric characteristics are important for measurement but are usually tested in a "silo"

The question we usually want to answer is:

Do the items hang together in their representative dimensions *taking into account* the other items and dimensions?

The question we usually want to answer is:

Do the items hang together in their representative dimensions *taking into account* the other items and dimensions?

That is, we want to know that our items are internally consistency *and* homogeneous in a multivariate, multidimensional context

The question we usually want to answer is:

Do the items hang together in their representative dimensions *taking into account* the other items and dimensions?

That is, we want to know that our items are internally consistency *and* homogeneous in a multivariate, multidimensional context

A Traditional psychometric approaches do not consider multidimensionality

We also want to know whether our dimensions and the items placed in those dimensions are likely to **generalize**

We also want to know whether our dimensions and the items placed in those dimensions are likely to **generalize**

Bootstrap Exploratory Graph Analysis

- Bootstrap using resampling with replacement (non-parametric) or multivariate normal data based on correlation matrix (parametric)
- Apply EGA to the replicate bootstrap sample

C The community detection algorithm places items into dimensions *automatically*

From the bootstraps, we can...

- Determine how frequent the empirical number of dimensions appear across the bootstraps
- Determine how often items are placed into their empirical (or other) dimension
- Determine how often a dimension replicates *exactly* across bootstraps

Implementation

```
# Load packages
library(EGAnet); library(psychTools)
```

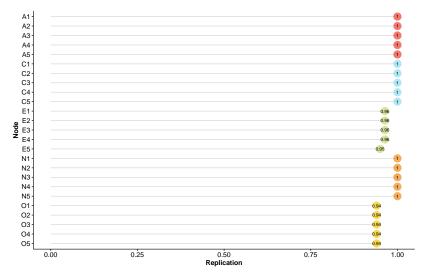
```
# Load data
data <- bfi[,1:25]</pre>
```

```
# Implement bootstrap EGA (empirical automatically computed)
bfi_boot <- bootEGA(data, seed = 42, ncores = 2)
# Seeds are set independent of R</pre>
```

```
# Print summary
summary(bfi_boot)
```

```
# Print dimension stability summary
summary(bfi_boot$stability)
```

Communities | 1 | 2 | 3 | 4 | 5



Model: GLASSO (EBIC) Correlations: auto Algorithm: Walktrap Unidimensional Method: Louvain

EGA Type: EGA Bootstrap Samples: 500 (Parametric)

4 5 Frequency: 0.096 0.904

_ _ _ _

Median dimensions: 5 [4.42, 5.58] 95% CI

EGA Type: EGA Bootstrap Samples: 500 (Parametric)

Proportion Replicated in Dimensions:

A1 A2 A3 A4 Α5 C1 C2 C3 C4 C5 E1 E2 E3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.964 0.964 E4 E5 N1 N2 NЗ N4 N5 01 02 03 Π4 05 0.964 0.950 1.000 1.000 1.000 1.000 0.940 0.940 0.940 0.940 0.940

Structural Consistency:

1 2 3 4 5 1.00 1.00 0.95 1.00 0.94

Guidelines

- Empirical solution frequency should be majority
- Item stability (replication) > 0.75
- Dimension stability > 0.75

 $\$ Resampling (non-parametric) will tend to produce equal or lower estimates to multivariate normal (parametric)

R Script

Causes of Instability

- Smaller sample sizes
- Local dependence
 - Items will form "minor factors" where a major factor will split into two or more communities
- Multidimensional
 - Items will replicate relatively evenly across two or more communities

Latent Variable Definition

Variables are unrelated after conditioning on a latent variable

- Shared semantic references (e.g., similar item phrasing)
- Shared substantive causes *not* related to the latent variable (e.g., social desirability)
- \bullet Conventional psychometric practices such as maximizing Cronbach's α

Network Psychometrics

- Components of the network are defined as "unique causal systems"
- Components are *unique* such that they are causally autonomous (i.e., distinct causal process)
- **Consequence**: variables in the network should be *unique* and **not** redundant

Take a network with many variables that are fairly unique but you have the two items

- I like to be the center of attention
- 2 I don't like attention

These two variables will be **strongly** connected (i.e., large edge weight)

Take a network with many variables that are fairly unique but you have the two items

- I like to be the center of attention
- 2 I don't like attention

These two variables will be **strongly** connected (i.e., large edge weight)

When evaluating the *node strength* or the sum of the connections to each node in the network, these two variables will likely have *inflated* values

Node strength quantifies how well connected a node is in the network and many researchers take this meaning as "importance"

Take a network with many variables that are fairly unique but you have the two items

- I like to be the center of attention
- 2 I don't like attention

These two variables will be **strongly** connected (i.e., large edge weight)

When evaluating the *node strength* or the sum of the connections to each node in the network, these two variables will likely have *inflated* values

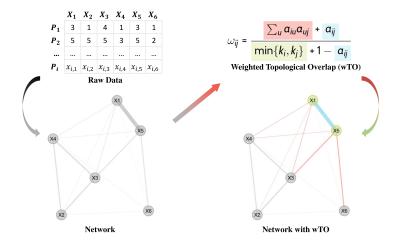
Node strength quantifies how well connected a node is in the network and many researchers take this meaning as "importance"

A question arises: Is the strength of these two nodes because they are indeed important or because they are redundant

Unique Variable Analysis

To assess whether there local dependence, Unique Variable Analysis (UVA) can be applied:

- Estimate a network (usually EBICglasso)
- Occupie Compute weighted topological overlap (wTO) on the network
- Apply a cut-off (≥ 0.25) to determine redundant pairs
- Eliminate pairs based on some heuristics



After cut-off, heuristics are used to eliminate redundant variable sets down to a single variable

2 variables: variable with the *lowest* maximum wTO to all *other* variables is retained

3 or more variables: variable with the *highest* mean wTO to all other variables in the *redundant set* is retained

Implementation

```
# Apply UVA
bfi_uva <- UVA(
    data, key = as.character(bfi.dictionary$Item[1:25])
)
# Print summary
summary(bfi_uva)</pre>
```

Variable pairs with wTO > 0.30 (large-to-very large redundancy)

node_i node_j wto Get angry easily. Get irritated easily. 0.431

Variable pairs with wTO > 0.25 (moderate-to-large redundancy)

Variable pairs with wTO > 0.20 (small-to-moderate redundancy)

node i node i wto Don't talk a lot. Find it difficult to approach others. 0.226 Am exacting in my work. Continue until everything is perfect. 0.225 Am indifferent to the feelings of others. Inquire about others' well-being, 0.219 Do things in a half-way manner. Waste my time. 0.209 Know how to comfort others. Make people feel at ease. 0.207 Get angry easily. Have frequent mood swings, 0,205 Have frequent mood swings. Often feel blue. 0.204 Inquire about others' well-being. Know how to comfort others, 0,203

Local (In)dependence

R Script

Effects of Reducing Redundancy

- More accurate dimension estimation: resolves issues associated with "minor factors" (i.e., smaller dimensions that form because of high shared variance between a smaller set of variables intend to form a dimension in a larger set)
- More accurate edge weights: associations between variables are due less to redundancy and more to their actual contribution to the network (assuming the network captures all variables of interest)

Effects of Reducing Redundancy

- More accurate dimension estimation: resolves issues associated with "minor factors" (i.e., smaller dimensions that form because of high shared variance between a smaller set of variables intend to form a dimension in a larger set)
- More accurate edge weights: associations between variables are due less to redundancy and more to their actual contribution to the network (assuming the network captures all variables of interest)

Is reducing redundancy always necessary?

Statistically consistent with factor/component loadings

Loading Definitions

- **factor**: how much one item is related to the factor or how well an item represents and *measures* the latent factor
- **network**: each node's contribution to the *emergence* of a coherent dimension in the network

In most applied circumstances, there is little difference

In network science, network measures are more common:

- local = a node's position in the network (e.g., centrality)
- meso-scale = sub-strutures such as communities
- global = overall structure of the network (e.g., average shortest path length)

Centrality (local) measures are still the most commonly applied measures in psychometric networks:

- node strength = absolute sum of a node's connections to other nodes in the network
- expected influence = signed sum of a node's connections to other nodes in the network

There are hundreds of centrality measures but most are problematic with respect to psychometric interpretations (see Bringmann et al., 2019)

Node Strength

$$S_i = \sum_{j=1}^n |w_{ij}|$$

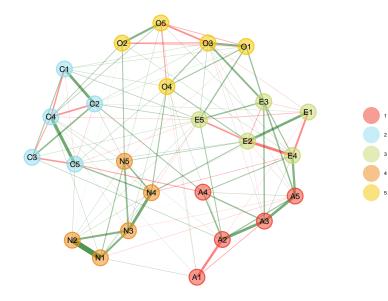
Expected Influence

$$E_i = \sum_{j=1}^n w_{ij}$$

- Node strength is commonly used as a measure of "influence"
- In psychopathology, many have proposed symptoms highest in node strength as intervention targets
- These interpretations are misleading...
 - Assumes between-person model applies to all individuals in the sample
 - Assumes the network is unidimensional
 - Assumes all variables are unique (i.e., node strength is not due to redundancy)

```
# Apply EGA
bfi_ega <- EGA(data)</pre>
```

```
# Compute node strength
sort(colSums(abs(bfi_ega$network)))
```



C3 02 A4 E1 C1 O4 05 N5A1 01 N3 0.43 0.63 0.64 0.64 0.66 0.73 0.74 0.75 0.76 0.80 0.92 Α5 N2C2C5 A3 A2 E3 E5 N4 03 C4 0.93 0.93 0.94 0.96 1.00 1.01 1.01 1.02 1.03 1.04 1.07 N1 E4 E2 1.07 1.11 1.16

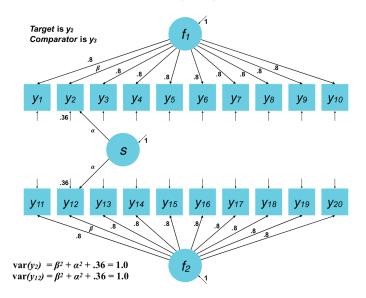
Recall that... Get angry easily (N1) and Get irritated easily (N2) were determined to be locally dependent

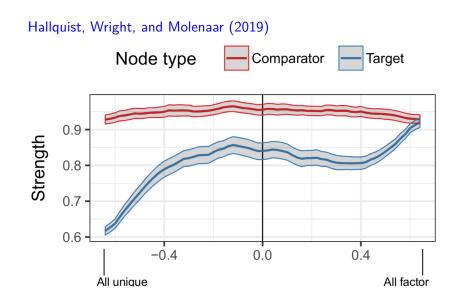
Connections to Factor Loadings

Hallquist, Wright, and Molenaar (2019)

CFA Model	Strength	Closeness	Betweenness
One-factor	0.98	0.94	0.74
Orthogonal Two-factor	0.98	0.42	0.37
Correlated Two-factor	0.97	0.51	0.44
Orthogonal Three-factor	0.98	0.42	0.31
Correlated Three-factor	0.97	0.55	0.41

Hallquist, Wright, and Molenaar (2019)



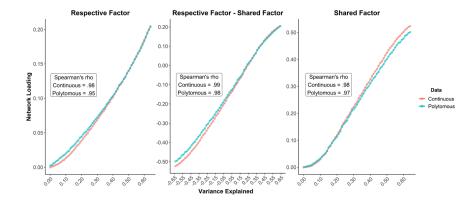


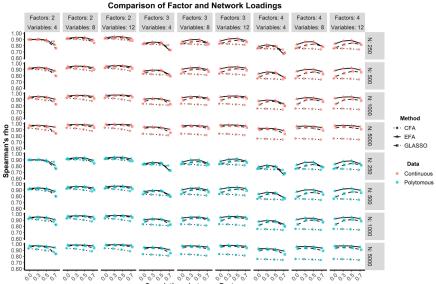
Solution: split node strength by community, c

$$L_{ic} = \sum_{j \in c}^{C} |w_{ij}|$$

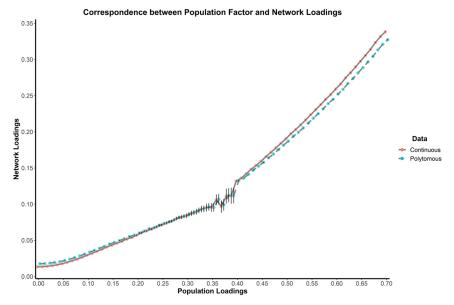
$$\aleph_{ic} = \frac{L_{ic}}{\sqrt{\sum L_{.c}}}$$

with signs added afterward





Correlations between Factors



There were some lingering issues though...

- Negative signs were added post-hoc and in a way that didn't always align
- Community-assigned loadings were sometimes *smaller* than their cross-loadings (impossible with factor analysis)
- Magnitudes are significantly affected by number of variables per community

Revised Loadings

within
$$\ell_{i,c} = n_c \left(\frac{\sum_{j=1}^{n_c} t_{i,j}}{n_c - 1} \right),$$

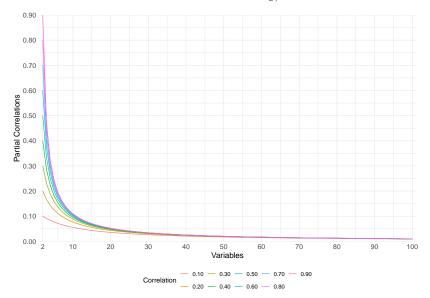
and

between
$$\ell_{i,k} = \sum_{i=1}^{n_c} \sum_{j=1}^{n_k} w_{i \in c, j \in k},$$

where

- $\bullet \ t_{i,j} = {\rm target} \ {\rm community} \ {\rm sub-matrix} \ {\rm with} \ {\rm node} \ i \ {\rm and} \ j \ {\rm in} \ {\rm community} \ c$
- $\bullet \ n_c = {\rm number \ of \ nodes}$ in the assigned community, c
- $\bullet \ n_k = {\rm number \ of \ nodes \ in \ a \ community, \ }k, \ {\rm that \ is \ not \ }c$

? Guttman (1953): as $n_c \to \infty$, then $r_{xy|z} \to 0$



Revised Loadings

$$\aleph_{i,c} = \frac{\ell_{i,c}}{\sqrt[\log(\zeta n_c)]{\sum_{j=1}^{n_c}|\text{within } \ell_{j,c}|}},$$

where

- $\bullet \ \log(n_c) = {\rm natural \ logarithm \ of \ the \ number \ of \ variables \ in \ community \ c$
- ζ = scaling factor for loading size (defaults to 2)

There were some lingering issues though...

- Negative signs were added post-hoc and in a way that didn't always align S
- ② Community-assigned loadings were sometimes *smaller* than their cross-loadings (impossible with factor analysis)
- Magnitudes are significantly affected by number of variables per community ¹

Okay... but why network loadings at all?

• Need for community-aligned loadings

 \rightarrow $\;$ Number of communities in factor analysis does not guarantee alignment with variable assignments

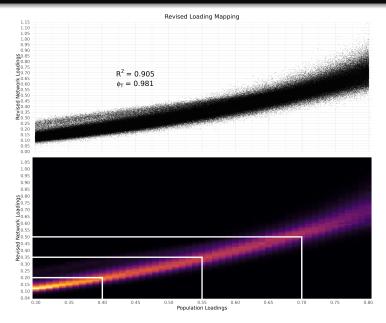
Network loadings are unrotated

Networks have fewer assumptions than factor models

 \rightarrow $\;$ Psychometric reference for when factor models don't work

```
# Compute network loadings
bfi_loadings <- net.loads(
    bfi_ega, loading.method = "experimental"
)$std[colnames(bfi_ega$network),] # standardized</pre>
```

	1	2	3	4	5
A1	-0.24	-0.01	0.00	0.03	-0.03
A2	0.58	0.04	0.07	0.01	0.02
A3	0.57	0.00	0.12	0.00	0.01
A4	0.25	0.11	0.06	0.00	0.00
A5	0.33	0.00	0.24	-0.03	0.01
C1	0.00	0.39	0.04	0.00	0.07
C2	0.06	0.46	0.03	0.02	0.03
C3	0.04	0.37	0.02	0.00	0.00
C4	-0.01	-0.52	-0.02	0.06	-0.10
C5	-0.06	-0.37	-0.05	0.10	0.03
E1	-0.01	0.01	-0.41	0.01	-0.02
E2	-0.02	-0.03	-0.56	0.09	0.05
E3	0.17	0.00	0.29	0.00	0.20
E4	0.23	0.00	0.44	-0.04	-0.04
E5	0.06	0.14	0.29	0.02	0.12
N1	-0.05	-0.02	0.02	0.59	0.00
N2	-0.01	-0.03	0.02	0.54	0.00
N3	0.00	-0.01	0.00	0.56	0.03
N4	0.00	-0.10	-0.13	0.35	0.07
N5	0.01	0.01	-0.05	0.30	-0.09
01	0.00	0.03	0.16	-0.01	0.37
02	0.00	-0.05	0.02	0.06	-0.31
O3	0.02	0.04	0.18	0.00	0.48
O4	0.03	0.00	-0.06	0.08	0.26
O5	-0.02	-0.04	0.02	0.01	-0.45



Network loadings open the door for many different traditional psychometric procedures

- group comparison (with dimensionality)
- network scores (and hierarchical dimensionality)
- conversion of loadings to IRT parameters (Muraki & Carlson, 1995)

Metric Invariance

Group comparison is often a goal in the social sciences

Many methods have been developed to make group comparisons in network psychometrics

- Fused GLASSO
- Network Comparison Test
- Group-as-Moderator
- Bayesian Posteriors

All of these methods implicitly treat the network as unidimensional

Motivating Example

Using the Big Five data as an example, let's say we want to examine whether there are any personality differences between those with a college degree and those without

```
# Obtain groups
groups <- ifelse(bfi[,"education"] < 4, "Non-grad", "Grad")</pre>
# Filter for missing groups
group_data <- data[!is.na(groups),]</pre>
groups <- na.omit(groups)</pre>
# Frequencies
table(groups)
groups
    Grad Non-grad
     812
              1765
```

Procedure

A permutation-based procedure can be employed to test for differences between groups (assuming some structure holds for both groups):

- Estimate networks and network loadings for both groups
- 2 Compute the difference between the *assigned* loadings (τ)
- Permutation: shuffle group label and repeat steps 1. and 2. for P times (e.g., 500; tau_{R_p})

$$\hfill Omega$$
 Compute $\sum_{p=1}^{P} |tau| \geq tau_{R_p}$ to obtain $p\mbox{-values}$

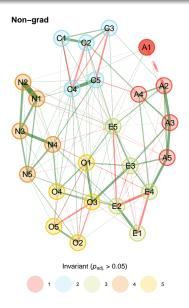
Significant differences (p < 0.05) suggest non-invariance (group differences exist) whereas p > 0.05 suggest invariance (group differences do not exist)

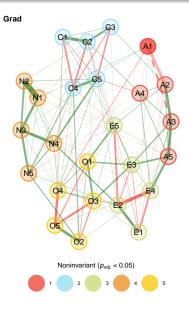
R Script

```
# Perform metric invariance
bfi_invariance <- invariance(</pre>
  data = group_data, groups = groups,
  structure = rep(1:5, each = 5), # theoretical structure
  loading.method = "experimental", # use latest loadings
 ncores = 8, seed = 42
# Summary
summary(bfi_invariance)
# Plot
plot(bfi_invariance, p_type = "p_BH")
```

	Membership	Difference	g	рBH	sig	Direction
A1						Non-grad > Grad
A2						5
AЗ	1	-0.032	0.570	0.679		
A4	1	0.042	0.286	0.596		
A5	1	-0.036	0.376	0.609		
C1	2	-0.076	0.136	0.486		
C2	2	-0.084	0.096	0.480		
C3	2	0.003	0.940	0.940		
C4	2	-0.036	0.504	0.630		
C5	2	0.004	0.936	0.940		
E1	3	0.033	0.414	0.609		
E2	3	0.122	0.018	0.150	*	Non-grad > Grad
E3	3	0.038	0.410	0.609		
E4	3	0.044	0.318	0.609		
E5	3	0.048	0.264	0.596		
N1	4	0.042	0.278	0.596		
N2	4	-0.004	0.914	0.940		
NЗ	4	-0.052	0.128	0.486		
N4	4	0.010	0.796	0.905		
N5	4	0.039	0.234	0.596		
01	5	0.038	0.470	0.630		
02	5	0.042	0.360	0.609		
03	5	0.035	0.484	0.630		
04	5	-0.064	0.158	0.494		
05	5	0.222	0.008	0.100	**	Non-grad > Grad
Si	gnif. code:	0 '***' 0.0	001 '*:	*' 0.01	L '*	' 0.05 '.' 0.1 'n.s.' 1

Metric Invariance





Non-invariant Items

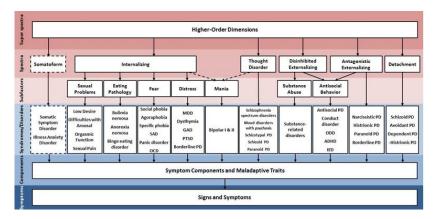
Item	Description	Significance	Direction
A1	Am indifferent to the feelings of others.	p_BH	Non-grad > Grad
E2	Find it difficult to approach others.	p	Non-grad > Grad
O5	Will not probe deeply into a subject.	p	Non-grad > Grad

Group differences can be examined with the network psychometric framework *accounting for* the community structure

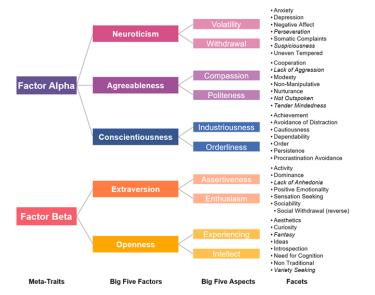
Tends to show comparable accuracy to traditional methods (e.g., SEM) with some advantage for disparate sample sizes (see Jamison et al., 2022)

Scores can be computed based on the network loadings using ${\sf X}$ (available using net.scores())

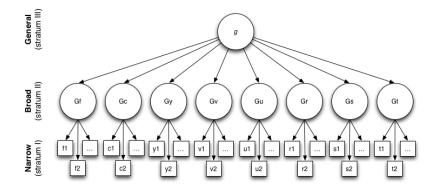
Many psychological phenotypes are theorized to be hierarchically structured



Many psychological phenotypes are theorized to be hierarchically structured



Many psychological phenotypes are theorized to be hierarchically structured



Motivating Example: Synthetic Aperture Personality Assessment

The SPI (SAPA Personality Inventory) is a set of 135 items primarily selected from the International Personality Item Pool

Extensive factor analytic and psychometric analyses (Condon, 2017) have arrived at the "Little" 27 lower-order and can be narrowed to a 70-item Big Five (e.g., last week's AHA)

Motivating Question: Do we find the Little 27 and Big Five using hierarchical EGA?

Hierarchical EGA

- Apply EGA using the *first pass* of the Louvain algorithm to obtain the lower order dimensions
- Estimate network loadings and compute network scores based on lower order dimensions
- Apply EGA to the network scores to obtain the higher order dimensions

Caveat

Remember: the Louvain algorithm results can change with node ordering

This stochastic nature of the algorithm is more acute at the lowest level (i.e., first pass)

To mitigate this issue, an approach known as *consensus clustering* can be used

Consensus Clustering (Lancichinetti & Fortunato, 2012)

- Randomly shuffle node order
- 2 Apply Louvain algorithm
- S Repeat 1. and 2. for N times (e.g., 1000)
- Obtain most common community structure across N applications

Result: more consistent (and accurate) results

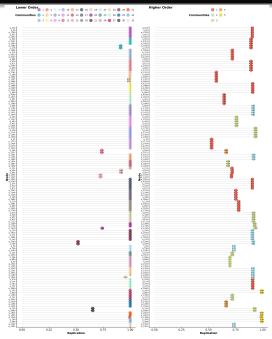
Application

```
# Obtain SAPA data
sapa <- psychTools::spi[,11:145]</pre>
# Apply hierarchical EGA
sapa_hier <- hierEGA(</pre>
  data = sapa,
  loading.method = "experimental",
  scores = "network"
)
# Summary
summary(sapa_hier)
# Plot
plot(sapa_hier)
```

R Script

How Stability are these Dimensions?

```
# Apply bootstrap hierarchical EGA
sapa_hier_boot <- bootEGA(
  data = sapa, EGA.type = "hierEGA",
  loading.method = "experimental",
  scores = "network",
  ncores = 8, seed = 42
)
# Summary
summary(sapa_hier_boot)
```



Summary

Summary

bootEGA = determine the dimension and item stability as well as potential for problematic items

UVA = determine redundancies in the network (or local dependence in latent variable modeling)

net.loads = estimate network loadings

invariance = compute metric invariance based on network
psychometrics

net.scores = compute network scores based on network loadings

hierEGA = estimate hierarchical dimensionality

Summary

O A	kranieby .	0	Work Ethic
0 9	Pregariousness	•	Impulsivity:
О Т	Trust	•	Aesthetic Interests
00	Nigence	0	Morality
0 4	inger	0	Modiness
0	Conformity	•	Self-eateem
0 0	Dirdenlinesis	0	Introspection
0	Cominance		Integrity
0 E	motionality		Immoduration
0.1	ariety-seeking	0	Self-discipline
0.0	Contentment		Reckessness
0	Allenmination		Neuroticism
	Excitement-aeeking	•	Sociability
• •	ntellect	0	Conscientiousness
0 1	/odesty	Ó	Moral Integrity
0 0	Cheerfulness		Openness to Experien
0 1	beralism	ō	Sensation-seeking
0 N	/elophile	õ	Dynamism
	Empetitry		Social Self-regulation

Dynamic Readings

Dynamic Readings

Dynamic Readings

Derivatives: Deboeck et al. (2009)

Dynamic EGA: Golino et al. (2022)

Vector autoregression networks: Epskamp et al. (2018)

GIMME: Beltz and Gates (2017)

Heterogeneity in Dynamic Structures

- Golino et al. (2023)
- Santoro and Nicosia (2020)
- De Domenico et al. (2015)