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Overview | Week 11

Readings

ESL Chapters: 17.1-17.3

Epskamp and Fried - 2018

Golino and Epskamp - 2017

Optional

Pons and Latapy -2006

Christensen - 2024

Schmittmann et al. - 2013

Blondel et al. - 2008

Christensen et al. - 2023 - community

Golino et al. - 2020
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https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Epskamp%20and%20Fried%20-%202018.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Golino%20and%20Epskamp%20-%202017.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Pons%20and%20Latapy%20-%202006.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Christensen%20-%202024.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Schmittmann%20et%20al.%20-%202013.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Blondel%20et%20al.%20-%202008.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Christensen%20et%20al.%20-%202023%20-%20community.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Golino%20et%20al.%20-%202020.pdf


Overview | Week 11

Network analysis

Network estimation

Community detection

Exploratory Graph Analysis (EGA)

Unidimensionality

Total Entropy Fit (TEFI)
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Dimension Reduction

Dimension Reduction
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Dimension Reduction

Goal: Dimension reduction is useful for reducing a large set of
variables to a smaller summary set of variables

Many different approaches exist to accomplish this task

Principal Component Analysis (PCA)

Factor Analysis (FA)

Exploratory Graph Analysis (EGA)
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Dimension Reduction

Principal Component Analysis

Seeks to identify a linear combination of variables that
maximizes variance on each consecutive component

Each component is orthogonal (no correlations between
components)

Useful for creating clear and unique dimensions (but not
necessary valid)
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Dimension Reduction

Factor Analysis

Seeks to identify latent variables that underlie the relationships
between variables

Often interpreted as a “common cause” of the relationships
between variables

Assumes that after accounting for the latent variables, observed
variables are no longer correlated (local dependence
assumption)

Most commonly used and assumed model in psychometrics

Nearly all scales are developed and validated with this model in
mind
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Dimension Reduction | Motivating Data

Big Five Personality Inventory

Five theoretical factors: openness to experience,
conscientiousness, extraversion, agreeableness, neuroticism

25 items (5 items per factor)

Sample size = 4,000

� Available in the {psych} package
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Dimension Reduction | Motivating Data

# Load packages
library(psych); library(lavaan); library(semPlot)

# Load bfi data
data <- bfi[,1:25]

# Set up correlated factor model
model <- paste0(

"O =~ ", paste0("O", 1:5, collapse = " + "), "\n",
"C =~ ", paste0("C", 1:5, collapse = " + "), "\n",
"E =~ ", paste0("E", 1:5, collapse = " + "), "\n",
"A =~ ", paste0("A", 1:5, collapse = " + "), "\n",
"N =~ ", paste0("N", 1:5, collapse = " + ")

)

# Fit CFA model
fit <- cfa(

model = model, data = data,
ordered = colnames(data), # ensure data are treated as ordinal
estimator = "WLSMV" # use categorical estimator

)
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Dimension Reduction | Motivating Data

# Summary
round(

fitMeasures(fit)[c(
"baseline.chisq.scaled", "baseline.df.scaled",
"baseline.pvalue.scaled",
"cfi.scaled", "tli.scaled",
"rmsea.scaled", "rmsea.ci.lower.scaled",
"rmsea.ci.upper.scaled", "rmsea.pvalue.scaled",
"srmr", "srmr_bentler"

)], 3
)

baseline.chisq.scaled baseline.df.scaled baseline.pvalue.scaled
33250.704 300.000 0.000

cfi.scaled tli.scaled rmsea.scaled
0.824 0.801 0.095

rmsea.ci.lower.scaled rmsea.ci.upper.scaled rmsea.pvalue.scaled
0.093 0.097 0.000
srmr srmr_bentler

0.083 0.070
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Dimension Reduction | Motivating Data

# Plot CFA
semPaths(

fit, what = "std",
intercepts = FALSE, residuals = FALSE,
thresholds = FALSE, sizeLat = 7, sizeMan = 5,
node.width = 1, layout = "circle"

)
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Dimension Reduction | Motivating Data
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Network Analysis

Network Analysis
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Network Analysis

Networks are everywhere
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Network Analysis

Breaking Down Networks
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Network Analysis

Breaking Down Networks
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Network Analysis

Breaking Down Networks
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Network Analysis
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Network Analysis

Networks are defined and interpreted by their constituent
elements (nodes and edges)

There are few inherent assumptions

Gaussian graphical models (most common in the social
sciences)

multivariate normal

(in)conditional relationships
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Exploratory Graph Analysis

Exploratory Graph Analysis
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Exploratory Graph Analysis

Started as a network science method combining Gaussian
graphical models with community detection algorithms

Since expanded into a full-fledged framework based on the
premise of connecting traditional psychometrics to network
psychometrics

Relatively new (circa 2017) and actively developing
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Exploratory Graph Analysis

Steps

1 Estimate associations

2 Estimate network

3 Apply community detection algorithm
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Exploratory Graph Analysis | Estimate Associations

1. Estimate associations
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Exploratory Graph Analysis | Estimate Associations

𝑟 = ∑(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
√∑(𝑥𝑖 − ̄𝑥)2 ∑(𝑦𝑖 − ̄𝑦)2

Continuous data (8 or more categories): Pearson’s correlation
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Exploratory Graph Analysis | Estimate Associations

Polytomous (3-7 categories): polychoric correlation

Dichotomous (2 categories): tetrachoric correlation

Polytomous/Dichotomous-Continuous: poly-/bi-serial
correlation

Non-parametric: Spearman’s rho

� {EGAnet}’s auto.correlate automatically computes the
appropriate correlations for you
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Exploratory Graph Analysis | Estimate Associations

# Load packages
library(EGAnet); library(ggplot2)

# Compute correlations
correlations <- auto.correlate(data)
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Exploratory Graph Analysis | Estimate Associations
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Exploratory Graph Analysis | Estimate Network

Psychometric networks use partial correlations given all other
variables

These partial correlations correspond to the conditional
relationship between two variables

Can be converted directly to 𝛽s from linear regression
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Exploratory Graph Analysis | Estimate Network

Let S represent the sample covariance matrix, then the correlation
matrix:

R = [diag(S)]−1/2 S [diag(S)]−1/2

The inverse covariance matrix equals the precision or conditional
relationships between variables:

K = S−1
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Exploratory Graph Analysis | Estimate Network

The inverse covariance matrix can be converted to partial
correlations:

P = −([diag(K)]−1/2 K [diag(K)]−1/2)
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Exploratory Graph Analysis | Estimate Network

Why partial correlations?
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Exploratory Graph Analysis | Estimate Network

Why partial correlations?
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Exploratory Graph Analysis | Estimate Network

The inverse covariance matrix can be used to compute 𝛽s:

𝛽𝑖𝑗 =
−𝜅𝑖𝑗

𝜅𝑖𝑖

Similarly, the partial correlations can be used to compute 𝛽s:

𝛽𝑖𝑗 = 𝑝𝑖𝑗 √
𝜅𝑖𝑖
𝜅𝑗𝑗

� Guttman (1953) has an amazing paper on these transfers
between correlation, regression, and partial correlation worlds
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https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Guttman%20-%201953.pdf


Exploratory Graph Analysis | Estimate Network

Graphical LASSO

Applies the LASSO to the inverse covariance matrix (K)

Goal: reduce overfitting but also create a sparse network
structure

(G)LASSO sets small coefficients to zero making sparsity a
natural consequence
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Exploratory Graph Analysis | Estimate Network

Formal Notation

log det(K) − tr(SK) − 𝜆 ∑
<𝑖,𝑗>

|𝑖𝑗|

Algorithm

Apply standard LASSO regularization to each variable and
permutate the last variable (column and row) to the first

Solve: S11𝛽 − 𝑠12 + 𝜆 ⋅ sign(𝛽) = 0

Repeat until convergence
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Exploratory Graph Analysis | Estimate Network

GLASSO Model Selection

𝜆 affects the sparsity (how densely connected) of the network

This parameter should be chosen with care
Too sparse and the model may detect the “true” underlying
structure
Too dense and the model is overparameterized

Model selection criterion:
Akaike Information Criterion (AIC)
Corrected AIC (AICc)
Bayesian Information Criterion (BIC)
Extended Bayesian Information Criterion (EBIC)
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Exploratory Graph Analysis | Estimate Network

GLASSO Model Selection

EBIC tends to be the standard approach

𝐿 = 𝑁
2

log det(K) − tr(SK)

𝐸𝐵𝐼𝐶 = −2𝐿 + 𝐸 log(𝑁) + 4𝛾𝐸 log(𝑉 )

𝐿 = log-likelihood

𝐸 = number of edges (connections)

𝑁 = sample size

𝑉 = number of variables

𝛾 = preference for more or less complex models
(𝛾 = 0 = 𝐵𝐼𝐶)

smaller 𝛾 = more complex

larger 𝛾 = more parsimonious 38 / 93



Exploratory Graph Analysis | Estimate Network

GLASSO Model Selection

Using EBIC, a model search over many 𝑙𝑎𝑚𝑏𝑑𝑎 parameters is
performed

This search is over a logarithmic number of 𝜆 parameters with
a “min-max” ratio

Default of this ratio in {EGAnet} = 0.01
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Exploratory Graph Analysis | Estimate Network
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Exploratory Graph Analysis | Estimate Network

# On the correlation matrix
bfi_network <- network.estimation(

data = correlations, n = nrow(data), model = "glasso"
)

# On the data
bfi_network <- network.estimation(data, model = "glasso")
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Exploratory Graph Analysis | Estimate Network
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Exploratory Graph Analysis | Estimate Network
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Exploratory Graph Analysis

R Script
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Exploratory Graph Analysis | Community Detection

Community Detection
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Exploratory Graph Analysis | Community Detection

There are many different metrics that can be applied to
network to quantify them (graph theory)

Community detection algorithms are used to identify sets of
connected nodes that have more connections within the set
than between the set

In scales, these reflect “dimensions” or “factors” (consistent
with PCA and factor analysis, respectively)
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Dimension Reduction | Exploratory Graph Analysis

Common algorithms:

Walktrap: uses hierarchical clustering to identify different
clusters

Louvain: uses local moves to maximize modularity

Spinglass: uses statistical mechanics and annealing processes

� Most algorithms aim to maximize the number of connections
within communities while minimizing the number of connections
between communities
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Exploratory Graph Analysis | Community Detection

communities: sets of densely connected nodes (sometimes referred
to as clusters)

modularity: metric to quantify the extent to which there are more
within-community connections than between-community connections

1
2𝑚 ∑

𝑖𝑗
( 𝐴𝑖𝑗 − 𝜌 𝑘𝑖𝑘𝑗

2𝑚 𝑠𝑖𝑠𝑗 )

𝑚 = strength of network

edge weight of node 𝑖 and node 𝑗

resolution parameter

𝑘 = strength for node 𝑖
and node 𝑗

𝑠𝑖𝑠𝑗 = 1, if same community;
otherwise 0

48 / 93



Exploratory Graph Analysis | Community Detection

Walktrap Algorithm
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Exploratory Graph Analysis | Community Detection

Rather than pursuing this process, the problem of the long-run
expected walks can be obtained:

T𝑖𝑗 =
W𝑖𝑗

∑𝑛
𝑖=1 |𝑤𝑖|

where:

W = network

T = transition probability between node 𝑖 and 𝑗

∑𝑛
𝑖=1 |𝑤𝑖| = node strength or absolute sum of a node’s

connections to all other nodes in the network
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Exploratory Graph Analysis | Community Detection

Convert transition matrix, T, to distance metric

𝑑𝑖𝑗 = √
𝑛

∑
𝑘=1

(T𝑖𝑘 − T𝑗𝑘)2

∑𝑛
𝑖=1 |𝑤𝑖|

� Euclidean norm
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Exploratory Graph Analysis | Community Detection

Convert transition matrix, T, to distance metric

𝑑𝑖𝑗 = √
𝑛

∑
𝑘=1

(T𝑖𝑘 − T𝑗𝑘)2

∑𝑛
𝑖=1 |𝑤𝑖|

� Euclidean norm
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Exploratory Graph Analysis | Community Detection

Using the distance matrix, Ward’s hierarchical clustering algorithm
is applied and modularity is used to select the number of clusters

# Apply Walktrap algorithm
bfi_walktrap <- community.detection(bfi_network, algorithm = "walktrap")

# Print summary
summary(bfi_walktrap)

Algorithm: Walktrap

Number of communities: 5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 O1 O2 O3 O4 O5
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
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Exploratory Graph Analysis | Community Detection
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Exploratory Graph Analysis | Community Detection

Louvain Algorithm

Iterative algorithm that takes multiple “passes” over merging the
nodes in the network

1 For one node, identify the community that maximizes the gain
in modularity

2 If there is a gain, then add that node to the community;
otherwise, leave in current community

3 Repeat for each node

○ This process constitutes one “pass”
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Exploratory Graph Analysis | Community Detection

Louvain Algorithm
1 After a pass, “merge” nodes by summing the connections

between nodes in their respective communities

2 Repeat process until modularity cannot be increased or
structure is unidimensional (all one community)

Because the passes start more granular and end broader, the
algorithm is sometimes referred to as “multi-level” (we’ll come back
to this notion with hierarchical EGA)
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Exploratory Graph Analysis | Community Detection
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Exploratory Graph Analysis | Community Detection
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Exploratory Graph Analysis | Community Detection

# Apply Louvain algorithm
bfi_louvain <- community.detection(bfi_network, algorithm = "louvain")

# Print summary
summary(bfi_louvain)

Algorithm: Louvain

Number of communities: 5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 O1 O2 O3 O4 O5
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
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Exploratory Graph Analysis | Community Detection

Notes on the Louvain Algorithm

Works sequentially, node-by-node, meaning node order can
change the result

{igraph}’s implementation (used in {EGAnet}) randomizes the
order outside of the scope of R

Other methods, such as Leiden, have improved on the original
Louvain algorithm to avoid node order issues

� A reproducible Louvain algorithm written in C code is in progress
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https://www.nature.com/articles/s41598-019-41695-z.pdf


Exploratory Graph Analysis

R Script
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Exploratory Graph Analysis

Recap

1 Estimate associations

2 Estimate network

3 Apply community detection algorithm
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Exploratory Graph Analysis

All-in-one Function
# Apply EGA
bfi_ega <- EGA(data)

# Print summary
summary(bfi_ega)

# Plot
plot(bfi_ega)
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Exploratory Graph Analysis

Model: GLASSO (EBIC with gamma = 0.5)
Correlations: auto
Lambda: 0.0764652282008741 (n = 100, ratio = 0.1)

Number of nodes: 25
Number of edges: 117
Edge density: 0.390

Non-zero edge weights:
M SD Min Max

0.046 0.119 -0.269 0.548

----

Algorithm: Walktrap

Number of communities: 5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 O1 O2 O3 O4 O5
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5

----

Unidimensional Method: Louvain
Unidimensional: No

----

TEFI: -27.335
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Exploratory Graph Analysis
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Exploratory Graph Analysis

R Script
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Unidimensionality

Unidimensionality
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Unidimensionality

unidimensional: belonging to or representing a single dimension

If a measurement is unidimensional, then the assumption is that the
measurement is capturing a single, unified construct

construct: our theoretical attribute that we measure that is
expected to map onto some attribute that exists in the real-world

In essence, a construct is a proxy of something too difficult to
directly measure through behavior
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Unidimensionality

There are a few fundamental issues with networks and
unidimensionality…

1 Partial correlations unevenly and unpredictably decrease
relations between some variables more than others

2 Sparse networks are inherently modular due to the lack of
edges between nodes

3 Modularity as a measure penalizes unidimensionality such that
modularity equals zero (so almost any modular solution will be
greater than one)
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Unidimensionality

(Partial) Correlations
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Unidimensionality

Sparsity and Modularity
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Unidimensionality

Zero-order Correlations
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Unidimensionality

# Apply unidimensional
community.unidimensional(data[,grep("O", colnames(data))])

Algorithm: Louvain

Number of communities: 1

O1 O2 O3 O4 O5
1 1 1 1 1

Solution: apply community detection algorithm to the zero-order
correlations
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Unidimensionality

EGA under the hood
1 Estimate associations
2 Check for unidimensionality on associations

a. If unidimensional, then stop

b. If not unidimensional, then proceed
3 Estimate network
4 Apply community detection algorithm
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Exploratory Graph Analysis

R Script
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Exploratory Graph Analysis | TEFI

Total Entropy Fit Index
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Exploratory Graph Analysis | TEFI

There are many community solution that can be achieved with
different algorithms

Further, some algorithms have parameters that can be tuned (e.g.,
steps in Walktrap)

What solution should be used? What should the parameters be set
to?

Total Entropy Fit Index provides an information theoretic approach
to determine the best fitting solution
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Exploratory Graph Analysis | TEFI

Entropy

𝐻(𝑋) = − ∑
𝑥∈𝑋

𝑝(𝑥) log 𝑝(𝑥)

Joint Entropy

𝐻(𝑋, 𝑌 ) = − ∑
𝑥∈𝑋

∑
𝑦∈𝑌

𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)

Conditional Entropy

𝐻(𝑌 |𝑋) = − ∑
𝑥∈𝑋

𝑝(𝑥) ∑
𝑦∈𝑌

𝑝(𝑦|𝑥) log 𝑝(𝑦|𝑥)

Joint Entropy (reformulated)

𝐻(𝑋, 𝑌 ) = 𝐻(𝑋) + 𝐻(𝑌 |𝑋)
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Exploratory Graph Analysis | TEFI

Total Correlation

𝐶𝑡𝑜𝑡𝑥
= (

𝑛
∑
𝑖=1

𝐻(𝑥𝑖)) − 𝐻(𝑥1, … , 𝑥𝑛) ≥ 0

Overall (inter)dependence of all variables

k-function

𝑘(𝑋𝑣, 𝑋𝜔) = 𝑛1𝐻(𝑋𝑣) + 𝑛2𝐻(𝑋𝜔) − (𝑛1 + 𝑛2)𝐻(𝑋𝑣, 𝑋𝜔)

Difference of the average entropy of 𝑋𝑣 and 𝑋𝜔 from the entropy
of the super-set
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Exploratory Graph Analysis | TEFI

Entropy Fit

𝐸𝐹𝐼 = [
∑𝑁𝐹

𝑖=1 𝐻(𝑆𝜂𝑖
)

𝑁𝐹
−𝐻(𝑆𝜂1

, … , 𝑆𝜂𝑛
)]+[(𝐻𝑚𝑎𝑥−

∑𝑁𝐹
𝑖=1 𝐻(𝑆𝜂𝑖

)
𝑁𝐹

)×√𝑁𝐹]

Works directly on the values of the data
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Exploratory Graph Analysis | TEFI

Von Neumann Entropy

𝑆(𝜌) = −tr(𝜌 log 𝜌))

where

𝜌 = R
𝑁

where R is the correlation matrix and 𝑁 is the number of variables
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Exploratory Graph Analysis | TEFI

Von Neumann Entropy

Given 𝜌, its eigenvalues 𝜆1, … , 𝜆𝑛 ≥ 0 can be used to analytically
solve for Von Neumann entropy such that

𝑆(𝜌) = −tr(ℒ(D))

This approach is computationally efficient especially for large
datasets
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Exploratory Graph Analysis | TEFI

Total Entropy Fit Index

𝑇 𝐸𝐹𝐼 = [
∑𝑁𝐹

𝑖=1 𝑆(𝜌𝑖)
𝑁𝐹

− 𝑆(𝜌)] + [(𝑆(𝜌) −
𝑁𝐹

∑
𝑖=1

𝑆(𝜌𝑖)) × √𝑁𝐹]
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Exploratory Graph Analysis | TEFI

Takeaways

TEFI is a fast and efficient measure to estimate the fit of a
dimensional solution

Based on simulation studies, TEFI is as accurate or more
accurate than more traditional measures commonly used in
dimension reduction (e.g. ΔCFI, ΔRMSEA, ΔSRMR)

Lower values = better solution
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Exploratory Graph Analysis | TEFI

# Apply EGA + TEFI with Walktrap
bfi_walktrap_fit <- EGA.fit(data, algorithm = "walktrap")

# Print summary
summary(bfi_walktrap_fit)
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Exploratory Graph Analysis | TEFI

Model: GLASSO (EBIC with gamma = 0.5)
Correlations: auto
Lambda: 0.0764652282008741 (n = 100, ratio = 0.1)

Number of nodes: 25
Number of edges: 117
Edge density: 0.390

Non-zero edge weights:
M SD Min Max

0.046 0.119 -0.269 0.548

----

Algorithm: Walktrap (Steps = 3)

Number of communities: 5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 O1 O2 O3 O4 O5
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5

----

TEFI: -27.335
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Exploratory Graph Analysis | TEFI

# Apply EGA + TEFI with Louvain
bfi_louvain_fit <- EGA.fit(data, algorithm = "louvain")

# Print summary
summary(bfi_louvain_fit)
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Exploratory Graph Analysis | TEFI

Model: GLASSO (EBIC with gamma = 0.5)
Correlations: auto
Lambda: 0.0764652282008741 (n = 100, ratio = 0.1)

Number of nodes: 25
Number of edges: 117
Edge density: 0.390

Non-zero edge weights:
M SD Min Max

0.046 0.119 -0.269 0.548

----

Algorithm: Louvain (Resolution = 0)

Number of communities: 5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 O1 O2 O3 O4 O5
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5

----

TEFI: -27.335
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Summary

Summary
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Summary

EGA
estimate pairwise associations

check for unidimensionality

estimate network

apply community detection algorithm

TEFI
grid search over community detection parameters

compare between multiple solutions (including theoretical and
non-network solutions)
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At Home Activity

At Home Activity
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At Home Activity

Load sapa.RData data

Apply EGA with Walktrap and Louvain
Report: number of communities, TEFI, and which algorithm fits
better

Apply EGA.fit with Walktrap and Louvain
Report: number of communities, TEFI, and which algorithm fits
better

Theoretically, there are the Big Five factors
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Readings for Next Week

Readings (Optional)

Christensen and Golino - 2021 - bootEGA

Christensen et al. - 2023 - UVA

Christensen and Golino - 2021 - loadings

Jamison et al. - 2022

Jimenez et al. - 2023

Samo et al. - 2023
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https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Christensen%20and%20Golino%20-%202021%20-%20bootEGA.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Christensen%20et%20al.%20-%202023%20-%20UVA.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Christensen%20and%20Golino%20-%202021%20-%20loadings.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Jamison%20et%20al.%20-%202022.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Jimenez%20et%20al.%20-%202023.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Samo%20et%20al.%20-%202023.pdf
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