Exploratory Graph Analysis

PSY-GS 8875 Behavioral Data Science
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Overview: Week 11
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Overview | Week 11

Readings
@ ESL Chapters: 17.1-17.3
@ Epskamp and Fried - 2018
@ Golino and Epskamp - 2017
Optional
@ Pons and Latapy -2006
@ Christensen - 2024

Schmittmann et al. - 2013

@ Blondel et al. - 2008
@ Christensen et al. - 2023 - community

@ Golino et al. - 2020
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https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Epskamp%20and%20Fried%20-%202018.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Golino%20and%20Epskamp%20-%202017.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Pons%20and%20Latapy%20-%202006.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Christensen%20-%202024.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Schmittmann%20et%20al.%20-%202013.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Blondel%20et%20al.%20-%202008.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Christensen%20et%20al.%20-%202023%20-%20community.pdf
https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Golino%20et%20al.%20-%202020.pdf

Overview | Week 11

Network analysis

Network estimation

@ Community detection

Exploratory Graph Analysis (EGA)

Unidimensionality

Total Entropy Fit (TEFI)
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Dimension Reduction

Dimension Reduction
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Dimension Reduction

Goal: Dimension reduction is useful for reducing a large set of
variables to a smaller summary set of variables

Many different approaches exist to accomplish this task
@ Principal Component Analysis (PCA)
@ Factor Analysis (FA)

@ Exploratory Graph Analysis (EGA)
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Dimension Reduction

Principal Component Analysis

@ Seeks to identify a linear combination of variables that
maximizes variance on each consecutive component

@ Each component is orthogonal (no correlations between
components)

@ Useful for creating clear and unique dimensions (but not
necessary valid)
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Dimension Reduction

Factor Analysis

Seeks to identify latent variables that underlie the relationships
between variables

Often interpreted as a “common cause” of the relationships
between variables

Assumes that after accounting for the latent variables, observed
variables are no longer correlated (local dependence
assumption)

Most commonly used and assumed model in psychometrics

Nearly all scales are developed and validated with this model in
mind
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Dimension Reduction | Motivating Data

Big Five Personality Inventory

@ Five theoretical factors: openness to experience,
conscientiousness, extraversion, agreeableness, neuroticism

@ 25 items (5 items per factor)
@ Sample size = 4,000

@ Available in the {psych} package
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Dimension Reduction | Motivating Data

# Load packages
library(psych); library(lavaan); library(semPlot)

# Load bfi data
data <- bfil[,1:25]

# Set up correlated factor model

model <- paste0(
"0 =~ ", paste0("0", 1:5, collapse = " + "), "\n",
"C =~ ", paste0("C", 1:5, collapse = " + "), "\n",
"E =~ ", pasteO("E", 1:5, collapse = " + "), "\n",
"A =~ ", pasteO("A", 1:5, collapse "+ "), "\n",
"N =~ ", pasteO("N", 1:5, collapse = " + ")

)

# Fit CFA model

fit <- cfa(
model = model, data data,
ordered = colnames(data), # ensure data are treated as ordinal
estimator = "WLSMV" # use categorical estimator

)
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Dimension Reduction | Motivating Data

# Summary
round (
fitMeasures(fit) [c(

"baseline.chisq.scaled", "baseline.df.scaled",
"baseline.pvalue.scaled",
"cfi.scaled", "tli.scaled",
"rmsea.scaled", "rmsea.ci.lower.scaled",
"rmsea.ci.upper.scaled", "rmsea.pvalue.scaled",
"srmr", "srmr_bentler"

)1, 3
)

baseline.chisq.scaled baseline.df.scaled baseline.pvalue.scaled
33250.704 300.000 0.000
cfi.scaled tli.scaled rmsea.scaled
0.824 0.801 0.095
rmsea.ci.lower.scaled rmsea.ci.upper.scaled rmsea.pvalue.scaled
0.093 0.097 0.000

srmr srmr_bentler

0.083 0.070
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Dimension Reduction | Motivating Data

# Plot CFA

semPaths (
fit, what = "std",
intercepts = FALSE, residuals = FALSE,
thresholds FALSE, sizelat = 7, sizeMan = 5,
node.width = 1, layout = "circle"
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Dimension Reduction | Motivating Data
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Network Analysis

Network Analysis
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Network Analysis

Networks are everywhere
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Network Analysis

Breaking Down Networks

Nodes
/ (variables)

¢
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Network Analysis

Breaking Down Networks

Nodes
{,/ (variables)
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Edges

NS
(associations)

17/93



Network Analysis

Breaking Down Networks

Nodes
(variables)

Edges

NS
(associations)
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Network Analysis

Types of networks

Social network

node: people

edge: relationship

sub-network: group of people or community

Semantic network

node: concept stored in memory
edge: association
sub-network: category

Brain network

node: neuron, region of interest
edge: co-activation
sub-network: default mode

Psychometric network

node: observable variable
edge: (partial) correlation
sub-network: dimension (or factor)
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Network Analysis

@ Networks are defined and interpreted by their constituent
elements (nodes and edges)

@ There are few inherent assumptions
@ Gaussian graphical models (most common in the social

sciences)

e multivariate normal

@ (in)conditional relationships
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Exploratory Graph Analysis

Exploratory Graph Analysis
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Exploratory Graph Analysis

@ Started as a network science method combining Gaussian
graphical models with community detection algorithms

@ Since expanded into a full-fledged framework based on the
premise of connecting traditional psychometrics to network
psychometrics

@ Relatively new (circa 2017) and actively developing
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Exploratory Graph Analysis

Steps
@ Estimate associations
@ Estimate network

© Apply community detection algorithm
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Exploratory Graph Analysis | Estimate Associations

1. Estimate associations
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Exploratory Graph Analysis | Estimate Associations
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@ Continuous data (8 or more categories): Pearson’s correlation
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Exploratory Graph Analysis | Estimate Associations

@ Polytomous (3-7 categories): polychoric correlation
@ Dichotomous (2 categories): tetrachoric correlation

@ Polytomous/Dichotomous-Continuous: poly-/bi-serial
correlation

@ Non-parametric: Spearman’s rho

¢ {EGAnet}'s auto.correlate automatically computes the
appropriate correlations for you
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Exploratory Graph Analysis | Estimate Associations

# Load packages
library (EGAnet); library(ggplot2)

# Compute correlations
correlations <- auto.correlate(data)
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Exploratory Graph Analysis | Estimate Associations
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Exploratory Graph Analysis | Estimate Network

@ Psychometric networks use partial correlations given all other
variables

@ These partial correlations correspond to the conditional
relationship between two variables

@ Can be converted directly to s from linear regression
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Exploratory Graph Analysis | Estimate Network

Let S represent the sample covariance matrix, then the correlation
matrix:

R = [diag(S)]""/? S [diag(S)]~"/?

The inverse covariance matrix equals the precision or conditional
relationships between variables:

K=S8"1
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Exploratory Graph Analysis | Estimate Network

The inverse covariance matrix can be converted to partial
correlations:

P — - ({dog(K] 1 K [oag()] 1)
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Exploratory Graph Analysis | Estimate Network

Why partial correlations?
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Exploratory Graph Analysis | Estimate Network

Why partial correlations?

Partial Correlations
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Exploratory Graph Analysis | Estimate Network

The inverse covariance matrix can be used to compute (s:

Similarly, the partial correlations can be used to compute fs:

B, = K
i = Pij [
JJ

=

& Guttman (1953) has an amazing paper on these transfers
between correlation, regression, and partial correlation worlds
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https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Guttman%20-%201953.pdf

Exploratory Graph Analysis | Estimate Network

Graphical LASSO
@ Applies the LASSO to the inverse covariance matrix (K)

@ Goal: reduce overfitting but also create a sparse network
structure

@ (G)LASSO sets small coefficients to zero making sparsity a
natural consequence

35/93



Exploratory Graph Analysis | Estimate Network

Formal Notation

log det(K) — tr(SK) — A Z |31

<i,5>

Algorithm

@ Apply standard LASSO regularization to each variable and
permutate the last variable (column and row) to the first

@ Solve: S;18 — 815+ A-sign(B) =0

@ Repeat until convergence
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Exploratory Graph Analysis | Estimate Network

GLASSO Model Selection
@ )\ affects the sparsity (how densely connected) of the network

@ This parameter should be chosen with care

@ Too sparse and the model may detect the “true” underlying
structure
@ Too dense and the model is overparameterized

@ Model selection criterion:

Akaike Information Criterion (AIC)

Corrected AIC (AlCc)

Bayesian Information Criterion (BIC)

Extended Bayesian Information Criterion (EBIC)
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Exploratory Graph Analysis | Estimate Network

GLASSO Model Selection

@ EBIC tends to be the standard approach
N
L= 3 log det(K) — tr(SK)

EBIC = —2L + Elog(N) + 4yElog(V)

L = log-likelihood

@ I/ = number of edges (connections)

N = sample size
@ V= number of variables

@ ~ = preference for more or less complex models
(y=0= BIO)
@ smaller v = more complex

@ larcer Y = more parsimonious 38/93



Exploratory Graph Analysis | Estimate Network

GLASSO Model Selection

@ Using EBIC, a model search over many lambda parameters is
performed

@ This search is over a logarithmic number of A\ parameters with
a “min-max" ratio

@ Default of this ratio in {EGAnet} = 0.01
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Exploratory Graph Analysis | Estimate Network

lambda = 0.076
EBIC = 48305.432

lambda = 0.119
EBIC = 49563.89
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Exploratory Graph Analysis | Estimate Network

# On the correlation matriz
bfi_network <- network.estimation(
data = correlations, n = nrow(data), model = "glasso"

)

# On the data
bfi_network <- network.estimation(data, model = "glasso")
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Exploratory Graph Analysis | Estimate Network
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Exploratory Graph Analysis | Estimate Network

EBICglasso Network
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Exploratory Graph Analysis

R Script
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Exploratory Graph Analysis | Community Detection

Community Detection
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Exploratory Graph Analysis | Community Detection

@ There are many different metrics that can be applied to
network to quantify them (graph theory)

@ Community detection algorithms are used to identify sets of
connected nodes that have more connections within the set
than between the set

@ In scales, these reflect “dimensions” or “factors” (consistent
with PCA and factor analysis, respectively)

46/93



Dimension Reduction | Exploratory Graph Analysis

Common algorithms:
@ Walktrap: uses hierarchical clustering to identify different
clusters
@ Louvain: uses local moves to maximize modularity

@ Spinglass: uses statistical mechanics and annealing processes

=~ Most algorithms aim to maximize the number of connections
within communities while minimizing the number of connections
between communities
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Exploratory Graph Analysis | Community Detection

communities: sets of densely connected nodes (sometimes referred

to as clusters)

modularity: metric to quantify the extent to which there are more
within-community connections than between-community connections

resolution parameter

m = strength of network j

!
T Z(Aij — P T Sisj>
ij
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Exploratory Graph Analysis | Community Detection

Walktrap Algorithm
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Exploratory Graph Analysis | Community Detection

Rather than pursuing this process, the problem of the long-run
expected walks can be obtained:

T.. — L
1J n
Zizl |w;
where:
@ W = network

@ T = transition probability between node 7 and j

° Z?ﬂ |w;| = node strength or absolute sum of a node's
connections to all other nodes in the network
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Exploratory Graph Analysis | Community Detection

Convert transition matrix, T, to distance metric

" (T, — T2
d;; = Z%—M)
k=1 Zz’:l [w;
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Exploratory Graph Analysis | Community Detection

Convert transition matrix, T, to distance metric

" (T, — T2
d;; = Z%—M)
k=1 Zz’:l [w;

¢ Euclidean norm
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Exploratory Graph Analysis | Community Detection

Using the distance matrix, Ward's hierarchical clustering algorithm
is applied and modularity is used to select the number of clusters

# Apply Walktrap algorithm
bfi_walktrap <- community.detection(bfi_network, algorithm = "walktrap")

# Print summary
summary (bfi_walktrap)

Algorithm: Walktrap
Number of communities: 5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 01 02 03 04 05
11111 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
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Exploratory Graph Analysis | Community Detection
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Exploratory Graph Analysis | Community Detection

Louvain Algorithm

Iterative algorithm that takes multiple “passes” over merging the
nodes in the network

@ For one node, identify the community that maximizes the gain
in modularity

@ If there is a gain, then add that node to the community;
otherwise, leave in current community

© Repeat for each node

© This process constitutes one “pass”
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Exploratory Graph Analysis | Community Detection

Louvain Algorithm

@ After a pass, “merge” nodes by summing the connections
between nodes in their respective communities

© Repeat process until modularity cannot be increased or
structure is unidimensional (all one community)

Because the passes start more granular and end broader, the
algorithm is sometimes referred to as “multi-level” (we'll come back
to this notion with hierarchical EGA)
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Exploratory Graph Analysis | Community Detection
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Exploratory Graph Analysis | Community Detection

Second Pass
05

02 03 o1

Gl
04

c2 E3

c4 E5 il !

c3 ) E4

c5 NS
N4 q:’ §§9 s
N1

58 /93



Exploratory Graph Analysis | Community Detection

# Apply Louvain algorithm
bfi_louvain <- community.detection(bfi_network, algorithm = "louvain")

# Print summary
summary (bfi_louvain)

Algorithm: Louvain
Number of communities: 5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 01 02 03 04 05
11111 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
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Exploratory Graph Analysis | Community Detection

Notes on the Louvain Algorithm

@ Works sequentially, node-by-node, meaning node order can
change the result

@ {igraph}'s implementation (used in {EGAnet}) randomizes the
order outside of the scope of R

@ Other methods, such as Leiden, have improved on the original
Louvain algorithm to avoid node order issues

F A reproducible Louvain algorithm written in C code is in progress
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https://www.nature.com/articles/s41598-019-41695-z.pdf

Exploratory Graph Analysis

R Script
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Exploratory Graph Analysis

Recap
@ Estimate associations
@ Estimate network

© Apply community detection algorithm
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Exploratory Graph Analysis

All-in-one Function
# Apply EGA
bfi_ega <- EGA(data)

# Print summary
summary (bfi_ega)

# Plot
plot(bfi_ega)
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Exploratory Graph Analysis

Model: GLASSO (EBIC with gamma = 0.5)
Correlations: auto
Lambda: 0.0764652282008741 (n = 100, ratio = 0.1)

Number of nodes: 25
Number of edges: 117
Edge density: 0.390
Non-zero edge weights:

M SD Min  Max
0.046 0.119 -0.269 0.548

Algorithm: Walktrap
Number of communities: 5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 01 02 03 04 05
111112 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5

Unidimensional Method: Louvain
Unidimensional: No

TEFI: -27.335
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Exploratory Graph Analysis
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Exploratory Graph Analysis

R Script
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Unidimensionality

Unidimensionality
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Unidimensionality

unidimensional: belonging to or representing a single dimension

If a measurement is unidimensional, then the assumption is that the
measurement is capturing a single, unified construct

construct: our theoretical attribute that we measure that is
expected to map onto some attribute that exists in the real-world

In essence, a construct is a proxy of something too difficult to
directly measure through behavior
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Unidimensionality

There are a few fundamental issues with networks and
unidimensionality...

@ Partial correlations unevenly and unpredictably decrease
relations between some variables more than others

© Sparse networks are inherently modular due to the lack of
edges between nodes

© Modularity as a measure penalizes unidimensionality such that
modularity equals zero (so almost any modular solution will be
greater than one)
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Unidimensionality

(Partial) Correlations

Zero-order Correlations Partial Correlations EBICglasso Network

E1 000 052 -035 -048 -0.33 0.00 028 -0.07 -0.22 -0.09 0.00 027 -0.07 -0.21 -0.08

E2 052 0.00 -042 -0.57 -0.42 028 0.00 -0.11 -0.35 -0.20 027 0.00 -0.11 -0.33 -0.18

E3 -0.35 -042 0.00 046 043 -0.07 -0.11 0.00 024 027 -0.07 -0.11 0.00 0.23 0.25
E4 -048 -0.57 046 0.00 0.35 -0.22 -0.35 0.24 0.00 0.03 -021 -0.33 0.23 0.00 0.04
E5 -0.33 -042 043 035 0.00 -0.09 -0.20 0.27 0.03 0.00 -0.08 -0.18 0.25 0.04 0.00
E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5
Weight
|
-1.00 -0.50 0.00 0.50 1.00
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Unidimensionality

Sparsity and Modularity

Single Community Singleton Communities Louvain Communities
Modularity = -0.000 Modularity = -0.206 Modularity = 0.048
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Unidimensionality

Zero-order Correlations

Single Community Singleton Communities Louvain Communities
Modularity = -0.000 Modularity = -0.201 Modularity = -0.073
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Unidimensionality

# Apply unidimensional
community.unidimensional(datal,grep("0", colnames(data))])

Algorithm: Louvain
Number of communities: 1

01 02 03 04 05
11 1 1 1

Solution: apply community detection algorithm to the zero-order
correlations
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Unidimensionality

EGA under the hood
© Estimate associations
@ Check for unidimensionality on associations
a. If unidimensional, then stop
b. If not unidimensional, then proceed
© Estimate network

@ Apply community detection algorithm
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Exploratory Graph Analysis

R Script
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Exploratory Graph Analysis | TEFI

Total Entropy Fit Index
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Exploratory Graph Analysis | TEFI

There are many community solution that can be achieved with
different algorithms

Further, some algorithms have parameters that can be tuned (e.g.,
steps in Walktrap)

What solution should be used? What should the parameters be set
to?

Total Entropy Fit Index provides an information theoretic approach
to determine the best fitting solution
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Exploratory Graph Analysis | TEFI

Entropy

— Y plx)logp(x

reX

Joint Entropy

—> > pla,y)logp(,y)

reX yeY

Conditional Entropy

H(Y|X) ==Y p(@))_pylz)logp(ylz)

zeX yeyY
Joint Entropy (reformulated)

H(X,Y)=H(X)+ H(Y|X)
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Exploratory Graph Analysis | TEFI

Total Correlation

Chot. :(ZH ) H(xy,...,x,)>0

Overall (inter)dependence of all variables

k-function
k(Xva Xw) = an(Xv> + n2H<Xw> - (nl =+ HQ)H(Xw Xw)

Difference of the average entropy of X, and X from the entropy
of the super-set
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Exploratory Graph Analysis | TEFI

Entropy Fit

Zi\]:li H(Sm)

EFI = N, —H(Sm,...,Snn)]%(Hmw—W)x\/J\TF}

Works directly on the values of the data
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Exploratory Graph Analysis | TEFI

Von Neumann Entropy

S(p) = —tr(plogp))

where

where R is the correlation matrix and N is the number of variables
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Exploratory Graph Analysis | TEFI

Von Neumann Entropy

Given p, its eigenvalues A, ..., \,, > 0 can be used to analytically
solve for Von Neumann entropy such that

S(p) = —tr(£(D))

This approach is computationally efficient especially for large
datasets

82/93



Exploratory Graph Analysis | TEFI

Total Entropy Fit Index

B -su) (- Ssm) v

i=1

TEFI =
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Exploratory Graph Analysis | TEFI

Takeaways

@ TEFI is a fast and efficient measure to estimate the fit of a
dimensional solution

@ Based on simulation studies, TEFI is as accurate or more
accurate than more traditional measures commonly used in
dimension reduction (e.g. ACFI, ARMSEA, ASRMR)

@ Lower values = better solution
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Exploratory Graph Analysis | TEFI

# Apply EGA + TEFI with Walktrap
bfi_walktrap_fit <- EGA.fit(data, algorithm = "walktrap")

# Print summary
summary (bfi_walktrap_fit)
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Exploratory Graph Analysis | TEFI

Model: GLASSO (EBIC with gamma = 0.5)
Correlations: auto

Lambda: 0.0764652282008741 (n = 100, ratio = 0.1)
Number of nodes: 25

Number of edges: 117

Edge density: 0.390

Non-zero edge weights:

M sSD Min  Max
0.046 0.119 -0.269 0.548

Algorithm: Walktrap (Steps = 3)
Number of communities: 5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 01 02 03 04 05
111112 2 2 2 23 3 3 3 3 4 4 4 4 455 5 55

TEFI: -27.335
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Exploratory Graph Analysis | TEFI

# Apply EGA + TEFI with Louvain
bfi_louvain_fit <- EGA.fit(data, algorithm = "louvain")

# Print summary
summary (bfi_louvain_fit)
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Exploratory Graph Analysis | TEFI

Model: GLASSO (EBIC with gamma = 0.5)
Correlations: auto

Lambda: 0.0764652282008741 (n = 100, ratio = 0.1)
Number of nodes: 25

Number of edges: 117

Edge density: 0.390

Non-zero edge weights:

M sSD Min  Max
0.046 0.119 -0.269 0.548

Algorithm: Louvain (Resolution = 0)
Number of communities: 5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 01 02 03 04 05
111112 2 2 2 23 3 3 3 3 4 4 4 4 455 5 55

TEFI: -27.335

88/93



Summary
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o EGA
@ estimate pairwise associations
@ check for unidimensionality
e estimate network

o apply community detection algorithm

e TEFI
@ grid search over community detection parameters

e compare between multiple solutions (including theoretical and
non-network solutions)
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At Home Activity

At Home Activity
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At Home Activity

@ Load sapa.RData data

@ Apply EGA with Walktrap and Louvain

@ Report: number of communities, TEFI, and which algorithm fits
better

@ Apply EGA.fit with Walktrap and Louvain

@ Report: number of communities, TEFI, and which algorithm fits
better

Theoretically, there are the Big Five factors
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Readings for Next Week

Readings (Optional)
@ Christensen and Golino - 2021 - bootEGA
@ Christensen et al. - 2023 - UVA
@ Christensen and Golino - 2021 - loadings
@ Jamison et al. - 2022
@ Jimenez et al. - 2023

Samo et al. - 2023
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https://github.com/AlexChristensen/PSY-GS-8875_Behavioral-Data-Science/blob/main/articles/Christensen%20and%20Golino%20-%202021%20-%20bootEGA.pdf
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