An algorithm to identify whether data were generated from a factor or network model using factor and network loadings. The algorithm uses heuristics based on theory and simulation. These heuristics were then submitted to several deep learning neural networks with 240,000 samples per model with varying parameters.
Arguments
- data
Matrix or data frame. Should consist only of variables to be used in the analysis. Can be raw data or a correlation matrix
- n
Numeric (length = 1). Sample size if
data
provided is a correlation matrix- corr
Character (length = 1). Method to compute correlations. Defaults to
"auto"
. Available options:"auto"
— Automatically computes appropriate correlations for the data using Pearson's for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, useordinal.categories
(seepolychoric.matrix
for more details)"cor_auto"
— Usescor_auto
to compute correlations. Arguments can be passed along to the function"pearson"
— Pearson's correlation is computed for all variables regardless of categories"spearman"
— Spearman's rank-order correlation is computed for all variables regardless of categories
For other similarity measures, compute them first and input them into
data
with the sample size (n
)- na.data
Character (length = 1). How should missing data be handled? Defaults to
"pairwise"
. Available options:"pairwise"
— Computes correlation for all available cases between two variables"listwise"
— Computes correlation for all complete cases in the dataset
- model
Character (length = 1). Defaults to
"glasso"
. Available options:"BGGM"
— Computes the Bayesian Gaussian Graphical Model. Set argumentordinal.categories
to determine levels allowed for a variable to be considered ordinal. See?BGGM::estimate
for more details"glasso"
— Computes the GLASSO with EBIC model selection. SeeEBICglasso.qgraph
for more details"TMFG"
— Computes the TMFG method. SeeTMFG
for more details
- algorithm
Character or
igraph
cluster_*
function (length = 1). Defaults to"walktrap"
. Three options are listed below but all are available (seecommunity.detection
for other options):"leiden"
— Seecluster_leiden
for more details"louvain"
— By default,"louvain"
will implement the Louvain algorithm using the consensus clustering method (seecommunity.consensus
for more information). This function will implementconsensus.method = "most_common"
andconsensus.iter = 1000
unless specified otherwise"walktrap"
— Seecluster_walktrap
for more details
- uni.method
Character (length = 1). What unidimensionality method should be used? Defaults to
"louvain"
. Available options:"expand"
— Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.'s (2020) Psychological Methods simulation"LE"
— Applies the Leading Eigenvector algorithm (cluster_leading_eigen
) on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.'s (2023) Behavior Research Methods simulation"louvain"
— Applies the Louvain algorithm (cluster_louvain
) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen's (2022) PsyArXiv simulation. Consensus clustering can be used by specifying either"consensus.method"
or"consensus.iter"
- iter
Numeric (length = 1). Number of replicate samples to be drawn from a multivariate normal distribution (uses
MASS::mvrnorm
). Defaults to100
(recommended)- seed
Numeric (length = 1). Defaults to
NULL
or random results. Set for reproducible results. See Reproducibility and PRNG for more details on random number generation inEGAnet
- verbose
Boolean (length = 1). Should progress be displayed? Defaults to
TRUE
. Set toFALSE
to not display progress- ...
Additional arguments that can be passed on to
auto.correlate
,network.estimation
,community.detection
,community.consensus
, andEGA
Value
Returns a list containing:
- empirical
Prediction of model based on empirical dataset only
- bootstrap
Prediction of model based on means of the loadings across the bootstrap replicate samples
- proportion
Proportions of models suggested across bootstraps
References
Model training and validation
Christensen, A. P., & Golino, H. (2021).
Factor or network model? Predictions from neural networks.
Journal of Behavioral Data Science, 1(1), 85-126.
Author
Hudson F. Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen at gmail.com>
Examples
# Get data
data <- psych::bfi[,1:25]
if (FALSE) # Compute LCT
## Factor model
LCT(data) # \dontrun{}