Skip to contents

EGA Workflows

Brown, G. P., Delgadillo, J., & Golino, H. (2023). Distinguishing the dimensions of the original Dysfunctional Attitude Scale in an archival clinical sample. Cognitive Therapy and Research, 47(1), 69–83. doi: 10.1007/s10608-022-10333-w

Maertens, R., Götz, F. M., Golino, H., Roozenbeek, J., Schneider, C. R., Kyrychenko, Y., Kerr, J. R., Stieger, S., McClanahan, W. P., & Drabot, K. (2023). The Misinformation Susceptibility Test (MIST): A psychometrically validated measure of news veracity discernment. Behavior Research Methods, 1–37. doi: 10.3758/s13428-023-02124-2


Bayesian Gaussian Graphical Model

Shi, D., Christensen, A. P., Day, E., Golino, H., & Garrido, L. E. (2023). A Bayesian approach for dimensionality assessment in psychological networks. PsyArXiv. doi: 10.31234/osf.io/9rcev


Bootstrap Exploratory Graph Analysis

Christensen, A. P., Golino, H., & Silvia, P. J. (2020). A psychometric network perspective on the validity and validation of personality trait questionnaires. European Journal of Personality, 34(6), 1095–1108. doi: 10.1002/per.2265

Christensen, A. P., & Golino, H. (2021). Estimating the stability of psychological dimensions via bootstrap exploratory graph analysis: A Monte Carlo simulation and tutorial. Psych, 3(3), 479–500. doi: 10.3390/psych3030032

Golino, H., Lillard, A. S., Becker, I., & Christensen, A. P. (2021). Investigating the structure of the Children’s Concentration and Empathy Scale using exploratory graph analysis. Psychological Test Adaptation and Development, 2(1), 35–49. doi: 10.1027/2698-1866/a000008


Dynamic Exploratory Graph Analysis

Golino, H., Christensen, A. P., Moulder, R., Kim, S., & Boker, S. M. (2022). Modeling latent topics in social media using Dynamic Exploratory Graph Analysis: The case of the right-wing and left-wing trolls in the 2016 US elections. Psychometrika, 87(1), 156–187. doi: 10.1007/s11336-021-09820-y

Heshmati, S., Rombaoa, J. P., Merritt, S., & Christensen, A. P. (2024). Well-being is a personalized experience: An intraindividual approach to dynamic well-being networks in daily life. PsyArXiv. doi: 10.31234/osf.io/b65xh


EGA + NLP

Kjellström, S., & Golino, H. (2019). Mining concepts of health responsibility using text mining and exploratory graph analysis. Scandinavian Journal of Occupational Therapy, 26(6), 395–410. doi: 10.1080/11038128.2018.1455896

Golino, H., Christensen, A. P., Moulder, R., Kim, S., & Boker, S. M. (2022). Modeling latent topics in social media using Dynamic Exploratory Graph Analysis: The case of the right-wing and left-wing trolls in the 2016 US elections. Psychometrika, 87(1), 156–187. doi: 10.1007/s11336-021-09820-y

Maertens, R., Götz, F. M., Golino, H., Roozenbeek, J., Schneider, C. R., Kyrychenko, Y., Kerr, J. R., Stieger, S., McClanahan, W. P., & Drabot, K. (2023). The Misinformation Susceptibility Test (MIST): A psychometrically validated measure of news veracity discernment. Behavior Research Methods, 1–37. doi: 10.3758/s13428-023-02124-2


Entropy Fit Indices

Golino, H., Jiménez, M., Garrido, L. E., & Christensen, A. P. (2024). Generalized Total Entropy Fit Index: A new fit index for dimensionality analysis of bifactor structures with multiple general factors in SEM and network psychometrics. PsyArXiv. doi:[10.31234/osf.io/5g3hb](research/Golino et al. - 2024 - Generalized Total Entropy Fit Index A new fit ind.pdf){target=“_blank”}

Golino, H., Moulder, R., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2021). Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables. Multivariate Behavioral Research, 56(6), 874–902. doi: 10.1080/00273171.2020.1779642

Jamison, L., Christensen, A. P., & Golino, H. (2021). Optimizing Walktrap’s community detection in networks using the Total Entropy Fit Index. PsyArXiv. doi: 10.31234/osf.io/9pj2m


Exploratory Graph Analysis

Golino, H., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE, 12(6), e0174035. doi: 10.1371/journal.pone.0174035

Golino, H., & Demetriou, A. (2017). Estimating the dimensionality of intelligence like data using Exploratory Graph Analysis. Intelligence, 62, 54–70. doi: 10.1016/j.intell.2017.02.007

Christensen, A. P., Gross, G. M., Golino, H. F., Silvia, P. J., & Kwapil, T. R. (2019). Exploratory graph analysis of the multidimensional schizotypy scale. Schizophrenia Research, 206, 43–51. doi: 10.1016/j.schres.2018.12.018

Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., Thiyagarajan, J. A., & Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial. Psychological Methods, 25(3), 292–320. doi: 10.1037/met0000255

Christensen, A. P., Garrido, L. E., Guerra-Peña, K., & Golino, H. (2023). Comparing community detection algorithms in psychometric networks: A Monte Carlo simulation. Behavior Research Methods, 1–21. doi: 10.3758/s13428-023-02106-4


Exploratory Graph Analysis with Total Entropy Fit Index

Jamison, L., Christensen, A. P., & Golino, H. (2021). Optimizing Walktrap’s community detection in networks using the Total Entropy Fit Index. PsyArXiv. doi: 10.31234/osf.io/9pj2m


Hierarchical Exploratory Graph Analysis

Golino, H., Thiyagarajan, J. A., Sadana, R., Teles, M., Christensen, A. P., & Boker, S. M. (2020). Investigating the broad domains of intrinsic capacity, functional ability and environment: An exploratory graph analysis approach for improving analytical methodologies for measuring healthy aging. PsyArXiv. doi: 10.31234/osf.io/hj5mc

Christensen, A. P., Cardillo, E. R., & Chatterjee, A. (2022). What kind of impacts can artwork have on viewers? Establishing a taxonomy for aesthetic impacts. British Journal of Psychology. doi: 10.1111/bjop.12623

Jiménez, M., Abad, F. J., Garcia-Garzon, E., Golino, H., Christensen, A. P., & Garrido, L. E. (2023). Dimensionality assessment in bifactor structures with multiple general factors: A network psychometrics approach. Psychological Methods. doi: 10.1037/met0000590


Loadings Comparison Test

Christensen, A. P., & Golino, H. (2021). Factor or network model? Predictions from neural networks. Journal of Behavioral Data Science, 1(1), 85–126. doi: 10.35566/jbds/v1n1/p5


Measurement Invariance

Jamison, L., Golino, H., & Christensen, A. P. (2022). Metric invariance in exploratory graph analysis via permutation testing. PsyArXiv. doi: 10.31234/osf.io/j4rx9


Network Loadings and Scores

Christensen, A. P., Golino, H., & Silvia, P. J. (2020). A psychometric network perspective on the validity and validation of personality trait questionnaires. European Journal of Personality, 34(6), 1095–1108. doi: 10.1002/per.2265

Christensen, A. P., & Golino, H. (2021). On the equivalency of factor and network loadings. Behavior Research Methods, 53(4), 1563–1580. doi: 10.3758/s13428-020-01500-6

Golino, H., Christensen, A. P., Moulder, R., Kim, S., & Boker, S. M. (2022). Modeling latent topics in social media using Dynamic Exploratory Graph Analysis: The case of the right-wing and left-wing trolls in the 2016 US elections. Psychometrika, 87(1), 156–187. doi: 10.1007/s11336-021-09820-y


Network Psychometrics + Information Theory

Golino, H., Nesselroade, J., & Christensen, A. P. (2022). Towards a psychology of individuals: The ergodicity information index and a bottom-up approach for finding generalizations. PsyArXiv. doi: 10.31234/osf.io/th6rm


Total Correlation

Felix, L. M., Mansur-Alves, M., Teles, M., Jamison, L., & Golino, H. (2021). Longitudinal impact and effects of booster sessions in a cognitive training program for healthy older adults. Archives of Gerontology and Geriatrics, 94, 104337. doi: 10.1016/j.archger.2021.104337


Random-Intercept Exploratory Graph Analysis

Garcia-Pardina, A., Abad, F. J., Christensen, A. P., Golino, H., & Garrido, L. E. (2022). Dimensionality assessment in the presence of wording effects: A network psychometric and factorial approach. PsyArXiv. doi: 10.31234/osf.io/7yqau


Triangulated Maximally Filtered Graph

Christensen, A. P., Kenett, Y. N., Aste, T., Silvia, P. J., & Kwapil, T. R. (2018). Network structure of the Wisconsin Schizotypy Scales–Short Forms: Examining psychometric network filtering approaches. Behavior Research Methods, 50(6), 2531–2550. doi: 10.3758/s13428-018-1032-9

Christensen, A. P., Cotter, K. N., & Silvia, P. J. (2019). Reopening openness to experience: A network analysis of four openness to experience inventories. Journal of Personality Assessment, 101(6), 574–588. doi: 10.1080/00223891.2018.1467428

Christensen, A. P., Cardillo, E. R., & Chatterjee, A. (2022). What kind of impacts can artwork have on viewers? Establishing a taxonomy for aesthetic impacts. British Journal of Psychology. doi: 10.1111/bjop.12623


Unidimensionality

Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., Thiyagarajan, J. A., & Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial. Psychological Methods, 25(3), 292–320. doi: 10.1037/met0000255

Christensen, A. P., Garrido, L. E., Guerra-Peña, K., & Golino, H. (2023). Comparing community detection algorithms in psychometric networks: A Monte Carlo simulation. Behavior Research Methods, 1–21. doi: 10.3758/s13428-023-02106-4


Unique Variable Analysis

Christensen, A. P., Golino, H., & Silvia, P. J. (2020). A psychometric network perspective on the validity and validation of personality trait questionnaires. European Journal of Personality, 34(6), 1095–1108. doi: 10.1002/per.2265

Christensen, A. P., Garrido, L. E., & Golino, H. (2023). Unique variable analysis: A network psychometrics method to detect local dependence. Multivariate Behavioral Research, 1–18. doi: 10.1080/00273171.2023.2194606