Package index
-
bootEGA() - Bootstrap Exploratory Graph Analysis
-
dynEGA() - Dynamic Exploratory Graph Analysis
-
dynEGA.ind.pop() - Intra- and Inter-individual
dynEGA
-
EGA() - Exploratory Graph Analysis
-
EGA.estimate() - Estimates
EGAfor Multidimensional Structures
-
dimensionStability() - Dimension Stability Statistics from
bootEGA
-
invariance() - Measurement Invariance of
EGAStructure
-
itemDiagnostics() - Diagnostics Analysis for Low Stability Items
-
itemStability() - Item Stability Statistics from
bootEGA
-
LCT() - Loadings Comparison Test
-
net.loads() - Network Loadings
-
net.scores() - Network Scores
-
UVA() - Unique Variable Analysis
-
EGM() - Exploratory Graph Model
-
EGM.compare() - Compare
EGMwith EFA
-
boot.ergoInfo() - Bootstrap Test for the Ergodicity Information Index
-
entropyFit() - Entropy Fit Index
-
ergoInfo() - Ergodicity Information Index
-
genTEFI() - Generalized Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
-
infoCluster() - Information Theoretic Mixture Clustering for
dynEGA
-
information() - Information Theory Metrics
-
jsd() - Jensen-Shannon Distance
-
tefi() - Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
-
tefi.compare() - Compare Total Entropy Fit Index (
tefi) Between Two Structures
-
totalCor() - Total Correlation
-
totalCorMat() - Total Correlation Matrix
-
vn.entropy() - Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
-
color_palette_EGA() EGAColor Palettes
-
compare.EGA.plots() - Visually Compare Two or More
EGAnetplots
-
EGAnet-plotplot.EGAnet - S3 Plot Methods for
EGAnet
-
auto.correlate() - Automatic correlations
-
community.compare() - Compares Community Detection Solutions Using Permutation
-
community.consensus() - Applies the Consensus Clustering Method (Louvain only)
-
community.detection() - Apply a Community Detection Algorithm
-
community.homogenize() - Homogenize Community Memberships
-
community.unidimensional() - Approaches to Detect Unidimensional Communities
-
convert2igraph() - Convert networks to
igraph
-
convert2tidygraph() - Convert networks to
tidygraph
-
cosine() - Cosine similarity
-
EBICglasso.qgraph() EBICglassofromqgraph1.4.4
-
Embed() - Time-delay Embedding
-
frobenius() - Frobenius Norm (Similarity)
-
glla() - Generalized Local Linear Approximation
-
igraph2matrix() - Convert
network to matrix
-
modularity() - Computes the (Signed) Modularity Statistic
-
network.compare() - Compares Network Structures Using Permutation
-
network.estimation() - Apply a Network Estimation Method
-
network.nonconvex() - GLASSO with Non-convex Penalties
-
network.generalizability() - Estimate the Generalizability of Network
-
network.predictability() - Predict New Data based on Network
-
polychoric.matrix() - Computes Polychoric Correlations
-
simDFM() - Simulate data following a Dynamic Factor Model
-
TMFG() - Triangulated Maximally Filtered Graph
-
wto() - Weighted Topological Overlap
-
EGAnetEGAnet-package - EGAnet-package
-
depression - Depression Data
-
dnn.weights - Loadings Comparison Test Deep Learning Neural Network Weights
-
intelligenceBattery - Intelligence Data
-
optimism - Optimism Data
-
prime.num - Prime Numbers through 100,000
-
sim.dynEGA - sim.dynEGA Data
-
wmt2 - WMT-2 Data