Skip to contents

EGA Functions

Main Exploratory Graph Analysis functions

bootEGA()
Bootstrap Exploratory Graph Analysis
dynEGA()
Dynamic Exploratory Graph Analysis
dynEGA.ind.pop()
Intra- and Inter-individual dynEGA
EGA()
Exploratory Graph Analysis
EGA.estimate()
Estimates EGA for Multidimensional Structures
EGA.fit()
EGA Optimal Model Fit using the Total Entropy Fit Index (tefi)
hierEGA()
Hierarchical EGA
riEGA()
Random-Intercept EGA

EGA Psychometric Functions

Exploratory Graph Analysis network psychometric framework functions

CFA()
CFA Fit of EGA or hierEGA Structure
dimensionStability()
Dimension Stability Statistics from bootEGA
invariance()
Measurement Invariance of EGA Structure
itemStability()
Item Stability Statistics from bootEGA
LCT()
Loadings Comparison Test
net.loads()
Network Loadings
net.scores()
Network Scores
UVA()
Unique Variable Analysis

EGM Functions

Main Exploratory Graph Model functions

EGM()
Exploratory Graph Model
EGM.compare()
Compare EGM with EFA
simEGM()
Simulate data following a Exploratory Graph Model (EGM)

Information Theory Functions

Information Theory-related functions for network psychometrics

boot.ergoInfo()
Bootstrap Test for the Ergodicity Information Index
entropyFit()
Entropy Fit Index
ergoInfo()
Ergodicity Information Index
genTEFI()
Generalized Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
infoCluster()
Information Theoretic Mixture Clustering for dynEGA
information()
Information Theory Metrics
jsd()
Jensen-Shannon Distance
tefi()
Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
totalCor()
Total Correlation
totalCorMat()
Total Correlation Matrix
vn.entropy()
Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices

Plots

Plot-related functions

color_palette_EGA()
EGA Color Palettes
compare.EGA.plots()
Visually Compare Two or More EGAnet plots
EGAnet-plot plot.EGAnet
S3 Plot Methods for EGAnet

Basic Functions

General purpose functions that allow for a more modular usage

auto.correlate()
Automatic correlations
community.compare()
Compares Community Detection Solutions Using Permutation
community.consensus()
Applies the Consensus Clustering Method (Louvain only)
community.detection()
Apply a Community Detection Algorithm
community.homogenize()
Homogenize Community Memberships
community.unidimensional()
Approaches to Detect Unidimensional Communities
convert2igraph()
Convert networks to igraph
convert2tidygraph()
Convert networks to tidygraph
cosine()
Cosine similarity
EBICglasso.qgraph()
EBICglasso from qgraph 1.4.4
Embed()
Time-delay Embedding
frobenius()
Frobenius Norm (Similarity)
glla()
Generalized Local Linear Approximation
igraph2matrix()
Convert network to matrix
modularity()
Computes the (Signed) Modularity Statistic
network.compare()
Compares Network Structures Using Permutation
network.estimation()
Apply a Network Estimation Method
network.generalizability()
Estimate the Generalizability of Network
network.predictability()
Predict New Data based on Network
polychoric.matrix()
Computes Polychoric Correlations
simDFM()
Simulate data following a Dynamic Factor Model
TMFG()
Triangulated Maximally Filtered Graph
wto()
Weighted Topological Overlap

Data and Package Information

Data hosted in the {EGAnet} package

EGAnet EGAnet-package
EGAnet-package
boot.wmt
bootEGA Results of wmt2Data
depression
Depression Data
dnn.weights
Loadings Comparison Test Deep Learning Neural Network Weights
ega.wmt
EGA Network of wmt2Data
intelligenceBattery
Intelligence Data
optimism
Optimism Data
prime.num
Prime Numbers through 100,000
sim.dynEGA
sim.dynEGA Data
wmt2
WMT-2 Data