Computes the fit of a dimensionality structure using empirical entropy. Lower values suggest better fit of a structure to the data.
Arguments
- data
Matrix or data frame. Contains variables to be used in the analysis
- structure
Numeric or character vector (length =
ncol(data)
). A vector representing the structure (numbers or labels for each item). Can be theoretical factors or the structure detected byEGA
Value
Returns a list containing:
- Total.Correlation
The total correlation of the dataset
- Total.Correlation.MM
Miller-Madow correction for the total correlation of the dataset
- Entropy.Fit
The Entropy Fit Index
- Entropy.Fit.MM
Miller-Madow correction for the Entropy Fit Index
- Average.Entropy
The average entropy of the dataset
References
Initial formalization and simulation
Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020).
Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables.
Multivariate Behavioral Research.
Author
Hudson F. Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com> and Robert Moulder <rgm4fd@virginia.edu>
Examples
# Load data
wmt <- wmt2[,7:24]
if (FALSE) { # \dontrun{
# Estimate EGA model
ega.wmt <- EGA(data = wmt)} # }
# Compute entropy indices
entropyFit(data = wmt, structure = ega.wmt$wc)
#> Total.Correlation Total.Correlation.MM Entropy.Fit Entropy.Fit.MM
#> 1 0.2429484 0.2222733 -1.103339 -1.127812
#> Average.Entropy
#> 1 -1.836265