Computes the Ergodicity Information Index
Usage
ergoInfo(
dynEGA.object,
use = c("edge.list", "unweighted", "weighted"),
shuffles = 5000
)
Arguments
- dynEGA.object
A
dynEGA.ind.pop
object- use
Character (length = 1). A string indicating what network element will be used to compute the algorithm complexity, the list of edges or the weights of the network. Defaults to
use = "unweighted"
. Current options are:"edge.list"
— Calculates the algorithm complexity using the list of edges"unweighted"
— Calculates the algorithm complexity using the binary weights of the encoded prime transformed network. 0 = edge absent and 1 = edge present"weighted"
— Calculates the algorithm complexity using the weights of encoded prime-weight transformed network
- shuffles
Numeric. Number of shuffles used to compute the Kolmogorov complexity. Defaults to
5000
Value
Returns a list containing:
- PrimeWeight
The prime-weight encoding of the individual networks
- PrimeWeight.pop
The prime-weight encoding of the population network
- Kcomp
The Kolmogorov complexity of the prime-weight encoded individual networks
- Kcomp.pop
The Kolmogorov complexity of the prime-weight encoded population network
- complexity
The complexity metric proposed by Santora and Nicosia (2020)
- EII
The Ergodicity Information Index
References
Original Implementation
Golino, H., Nesselroade, J. R., & Christensen, A. P. (2022).
Toward a psychology of individuals: The ergodicity information index and a bottom-up approach for finding generalizations.
PsyArXiv.
Author
Hudson Golino <hfg9s at virginia.edu> and Alexander Christensen <alexpaulchristensen@gmail.com>
Examples
# Obtain data
sim.dynEGA <- sim.dynEGA # bypasses CRAN checks
if (FALSE) { # \dontrun{
# Dynamic EGA individual and population structure
dyn.ega1 <- dynEGA.ind.pop(
data = sim.dynEGA[,-26], n.embed = 5, tau = 1,
delta = 1, id = 25, use.derivatives = 1,
ncores = 2, corr = "pearson"
)
# Compute empirical ergodicity information index
eii <- ergoInfo(dyn.ega1)} # }