Computes the Frobenius Norm (Ulitzsch et al., 2023)
References
Simulation Study
Ulitzsch, E., Khanna, S., Rhemtulla, M., & Domingue, B. W. (2023).
A graph theory based similarity metric enables comparison of subpopulation psychometric networks
Psychological Methods.
Author
Hudson Golino <hfg9s at virginia.edu> & Alexander P. Christensen <alexander.christensen at Vanderbilt.Edu>
Examples
# Obtain wmt2 data
wmt <- wmt2[,7:24]
# Set seed (for reproducibility)
set.seed(1234)
# Split data
split1 <- sample(
1:nrow(wmt), floor(nrow(wmt) / 2)
)
split2 <- setdiff(1:nrow(wmt), split1)
# Obtain split data
data1 <- wmt[split1,]
data2 <- wmt[split2,]
# Perform EBICglasso
glas1 <- EBICglasso.qgraph(data1)
glas2 <- EBICglasso.qgraph(data2)
# Frobenius norm
frobenius(glas1, glas2)
#> [1] 0.7070395
# 0.7070395