Performs hierarchical clustering using Jensen-Shannon distance followed by the Louvain algorithm with consensus clustering. The method iteratively identifies smaller and smaller clusters until there is no change in the clusters identified
Arguments
- dynEGA.object
A
dynEGA
or adynEGA.ind.pop
object that is used to match the arguments of the EII object- plot.cluster
Boolean (length = 1). Should plot of optimal and hierarchical clusters be output? Defaults to
TRUE
. Set toFALSE
to not plot- ...
Additional arguments to be passed on to
jsd
Value
Returns a list containing:
- clusters
A vector corresponding to cluster each participant belongs to
- clusterTree
The dendogram from
hclust
the hierarhical clustering- clusterPlot
Plot output from results
- JSD
Jensen-Shannon Distance
See also
plot.EGAnet
for plot usage in EGAnet
Author
Hudson Golino <hfg9s at virginia.edu> & Alexander P. Christensen <alexander.christensen at Vanderbilt.Edu>
Examples
# Obtain data
sim.dynEGA <- sim.dynEGA # bypasses CRAN checks
if (FALSE) { # \dontrun{
# Dynamic EGA individual and population structure
dyn.ega1 <- dynEGA.ind.pop(
data = sim.dynEGA, n.embed = 5, tau = 1,
delta = 1, id = 25, use.derivatives = 1,
ncores = 2, corr = "pearson"
)
# Perform information-theoretic clustering
clust1 <- infoCluster(dynEGA.object = dyn.ega1)} # }