Computes the between- and within-community
strength
of each variable for each community
Usage
net.loads(
A,
wc,
loading.method = c("original", "revised"),
scaling = 2,
rotation = NULL,
...
)
Arguments
- A
Network matrix, data frame, or
EGA
object- wc
Numeric or character vector (length =
ncol(A)
). A vector of community assignments. If input intoA
is anEGA
object, thenwc
is automatically detected- loading.method
Character (length = 1). Sets network loading calculation based on implementation described in
"original"
(Christensen & Golino, 2021) or the"revised"
(Christensen et al., 2024) implementation. Defaults to"revised"
- scaling
Numeric (length = 1). Scaling factor for the magnitude of the
"experimental"
network loadings. Defaults to2
.10
makes loadings roughly the size of factor loadings when correlations between factors are orthogonal- rotation
Character. A rotation to use to obtain a simpler structure. For a list of rotations, see
rotations
for options. Defaults toNULL
or no rotation. By setting a rotation,scores
estimation will be based on the rotated loadings rather than unrotated loadings- ...
Additional arguments to pass on to
rotations
Value
Returns a list containing:
- unstd
A matrix of the unstandardized within- and between-community strength values for each node
- std
A matrix of the standardized within- and between-community strength values for each node
- rotated
NULL
ifrotation = NULL
; otherwise, a list containing the rotated standardized network loadings (loadings
) and correlations between dimensions (Phi
) from the rotation
Details
Simulation studies have demonstrated that a node's strength centrality is roughly equivalent to factor loadings (Christensen & Golino, 2021; Hallquist, Wright, & Molenaar, 2019). Hallquist and colleagues (2019) found that node strength represented a combination of dominant and cross-factor loadings. This function computes each node's strength within each specified dimension, providing a rough equivalent to factor loadings (including cross-loadings; Christensen & Golino, 2021).
References
Original implementation and simulation
Christensen, A. P., & Golino, H. (2021).
On the equivalency of factor and network loadings.
Behavior Research Methods, 53, 1563-1580.
Demonstration of node strength similarity to CFA loadings
Hallquist, M., Wright, A. C. G., & Molenaar, P. C. M. (2019).
Problems with centrality measures in psychopathology symptom networks: Why network psychometrics cannot escape psychometric theory.
Multivariate Behavioral Research, 1-25.
Revised network loadings
Christensen, A. P., Golino, H., Abad, F. J., & Garrido, L. E. (2024).
Revised network loadings.
PsyArXiv.
Author
Alexander P. Christensen <alexpaulchristensen@gmail.com> and Hudson Golino <hfg9s at virginia.edu>
Examples
# Load data
wmt <- wmt2[,7:24]
# Estimate EGA
ega.wmt <- EGA(
data = wmt,
plot.EGA = FALSE # No plot for CRAN checks
)
# Network loadings
net.loads(ega.wmt)
#> The default 'loading.method' has changed to "revised" in {EGAnet} version >= 2.0.7.
#>
#> For the previous default (version <= 2.0.6), use `loading.method = "original"`
#> Loading Method: Revised
#>
#> 1 2
#> wmt2 0.608 0.145
#> wmt1 0.402 0.106
#> wmt3 0.344 0.204
#> wmt5 0.318 0.234
#> wmt4 0.298 0.231
#> wmt9 0.523
#> wmt7 0.461
#> wmt15 0.441
#> wmt14 0.433
#> wmt6 0.177 0.429
#> wmt16 0.392
#> wmt8 0.391
#> wmt10 0.21 0.368
#> wmt12 0.334
#> wmt18 0.326
#> wmt13 0.304
#> wmt17 0.122 0.299
#> wmt11 0.277
#> Standardized loadings >= |0.10| are displayed. To change this 'minimum', use `print(net.loads_object, minimum = 0.10)`