Computes several traditional fit metrics for networks including
chi-square (\(\chi^2\))
root mean square error of approximation (RMSEA) with confidence intervals
confirmatory fit index (CFI)
Tucker-Lewis inded (TLI)
standardized root mean residual (SRMR)
log-likelihood
Akaike's information criterion (AIC)
Bayesian information criterion (BIC)
References
Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Combining network and latent variable models. Psychometrika, 82(4), 904–927.
Author
Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>
Examples
# Load data
wmt <- wmt2[,7:24]
# Obtain correlation matrix
S <- auto.correlate(wmt)
# EBICglasso (default for EGA functions)
glasso_network <- network.estimation(
data = wmt, model = "glasso"
)
# Obtain fit (expects continuous variables!)
network.fit(network = glasso_network, n = nrow(wmt), S = S)
#> chisq df chisq.p.value RMSEA RMSEA.95.lower
#> 4.872873e+02 5.700000e+01 0.000000e+00 7.981465e-02 7.210562e-02
#> RMSEA.95.upper RMSEA.p.value CFI TLI SRMR
#> 8.767329e-02 6.732562e-10 9.512754e-01 8.692128e-01 5.685879e-02
#> logLik AIC BIC
#> -2.601760e+04 5.222720e+04 5.271464e+04
# Scaled metrics are not yet available for
# dichotomous or polytomous data!