Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
Source:R/vn.entropy.R
vn.entropy.Rd
Computes the fit of a dimensionality structure using Von Neumman's entropy when the input is a correlation matrix. Lower values suggest better fit of a structure to the data
Arguments
- data
Matrix or data frame. Contains variables to be used in the analysis
- structure
Numeric or character vector (length =
ncol(data)
). A vector representing the structure (numbers or labels for each item). Can be theoretical factors or the structure detected byEGA
Value
Returns a list containing:
- VN.Entropy.Fit
The Entropy Fit Index using Von Neumman's entropy
- Total.Correlation
The total correlation of the dataset
- Average.Entropy
The average entropy of the dataset
References
Initial formalization and simulation
Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020).
Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables.
Multivariate Behavioral Research.
Author
Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>
Examples
# Get EGA result
ega.wmt <- EGA(
data = wmt2[,7:24], model = "glasso",
plot.EGA = FALSE # no plot for CRAN checks
)
# Compute Von Neumman entropy
vn.entropy(ega.wmt$correlation, ega.wmt$wc)
#> VN.Entropy.Fit Total.Correlation Average.Entropy
#> 1 -2.556997 0 -1.65189