Generalized Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
Source:R/genTEFI.R
genTEFI.RdComputes the fit (Generalized TEFI) of a hierarchical or correlated bifactor
dimensionality structure (or hierEGA objects) using Von Neumman's entropy
when the input is a correlation matrix. Lower values suggest better fit of a structure to the data
Arguments
- data
Matrix, data frame, or
hierEGAobject. Can be raw data or correlation matrix- structure
List (length = levels). A list containing the hierarchical structure. Each list element corresponds to increasing levels (1 = first level, 2 = second level, etc.). The length of the first element (first level) should be the same as the number of variables in
data. Each level after should either be the number of variables (ncol(data)) or the maximum number of dimensions from the preceding level (max(previous_dimensions))- verbose
Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to
TRUEto see all messages and warnings for every function call. Set toFALSEto ignore messages and warnings
Value
Returns a levels + 1 columns data frame of the Generalized Total Entropy
Fit Index using Von Neumman's entropy (VN.Entropy.Fit) (first column) as well as
each individual's levels entropy
Author
Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>
Examples
# Example using network scores
opt.hier <- hierEGA(
data = optimism, scores = "network",
plot.EGA = FALSE # No plot for CRAN checks
)
#> Warning: This implementation of `hierEGA` is experimental.
#>
#> The underlying function and/or output may change until the results have been appropriately vetted and validated.
#> The default 'loading.method' has changed to "revised" in {EGAnet} version >= 2.0.7.
#>
#> For the previous default (version <= 2.0.6), use `loading.method = "original"`
# Compute the Generalized Total Entropy Fit Index
genTEFI(opt.hier)
#> VN.Entropy.Fit Level_1_VN Level_2_VN
#> 1 -11.68101 -2.851873 -8.82914