Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
Source:R/tefi.R
tefi.Rd
Computes the fit (TEFI) of a dimensionality structure using Von Neumman's entropy when the input is a correlation matrix. Lower values suggest better fit of a structure to the data.
Arguments
- data
Matrix, data frame, or
*EGA
class object. Matrix or data frame can be raw data or a correlation matrix. All*EGA
objects are accepted.hierEGA
input will produced the Generalized TEFI (seegenTEFI
)- structure
Numeric or character vector (length =
ncol(data)
). Can be theoretical factors or the structure detected byEGA
- verbose
Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to
TRUE
to see all messages and warnings for every function call. Set toFALSE
to ignore messages and warnings
Value
Returns a data frame with columns:
Non-hierarchical Structure
- VN.Entropy.Fit
The Total Entropy Fit Index using Von Neumman's entropy
- Total.Correlation
The total correlation of the dataset
- Average.Entropy
The average entropy of the dataset
Hierarchical Structure
- VN.Entropy.Fit
The Generalized Total Entropy Fit Index using Von Neumman's entropy
- Lower.Order.VN
Lower order (only) Total Entropy Fit Index
- Higher.Order.VN
Higher order (only) Total Entropy Fit Index
References
Initial formalization and simulation
Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020).
Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables.
Multivariate Behavioral Research.
Author
Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>
Examples
# Load data
wmt <- wmt2[,7:24]
# Estimate EGA model
ega.wmt <- EGA(
data = wmt, model = "glasso",
plot.EGA = FALSE # no plot for CRAN checks
)
# Compute entropy indices for empirical EGA
tefi(ega.wmt)
#> VN.Entropy.Fit Total.Correlation Average.Entropy
#> 1 -11.17104 -2.695968 -14.98371
# User-defined structure (with `EGA` object)
tefi(ega.wmt, structure = c(rep(1, 5), rep(2, 5), rep(3, 8)))
#> VN.Entropy.Fit Total.Correlation Average.Entropy
#> 1 -10.35118 -5.597834 -20.04691